• Title/Summary/Keyword: Load response

Search Result 2,992, Processing Time 0.028 seconds

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini;O. Rahmani;H. Hayati;M. Keshtkar
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.193-210
    • /
    • 2023
  • This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.

The dynamic response of the FGM coated half-plane with hysteretic damping under time harmonic loading

  • Xiao-Min Wang;Liao-Liang Ke;Yue-Sheng Wang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.95-106
    • /
    • 2023
  • This paper investigates the dynamic response of a functionally graded material (FGM) coated half-plane excited by distributed time harmonic loading. Three types of typical distributed surface loads, including uniform load, Hertz load, and square-root singular load, are considered. The mass density and elastic modulus of the FGM coating are supposed to be described by the exponential function. The material damping is modelled by a linearly hysteretic damping which is expressed by a complex modulus in the time harmonic motion. Using Fourier integral transform technique and numerical integral method, the effects of the excitation frequency, gradient index, damping, and load type on the dynamic stresses and displacements are discussed.

Development of BEMS linked Demand Response System for Building Energy Demand Management (건물 에너지 수요관리를 위한 BEMS 연계형 수요반응 시스템 개발)

  • Lee, Sanghak
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • In order to take advantage of the building as an energy demand resources, it requires automated systems that can respond to the demand response event. Load aggregator has been started business in Korea, research and development of building energy management and demand response systems that can support them has been active recently. However, the ratio of introducing automated real-time demand response systems is insufficient and the cost is also high. In this research, we developed a building energy management system and OpenADR protocol to participate in a demand response and then evaluated them in real building. OpenADR is a standard protocol for automated system through the event and reporting between load aggregator and demand-side. In addition, we also developed a web-based building control system to embrace different control systems and to reduce the peak load during demand response event. We verified that the result systems are working in a building and the reduced load is measured to confirm the demand response.

Analysis on interaction of Ground and support using Ground response curve for tunnel design (지반응답곡선을 이용한 지반과 지보재의 상호작용 분석)

  • Ahn, Tae-Hun;Ahn, Sung-Hak;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1059-1064
    • /
    • 2002
  • The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The load-deformation characteristics of ground and support are derived by the interaction between ground and support. The interaction between ground and support is qualitatively illustrated by a ground response curve. The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The interaction between ground and support is qualitatively illustrated by a ground response curve. The convergence-confinement method don't need the basic assumptions for a mathematical model. Also This is applicable to general tunnel. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

  • PDF

A Study on Demand Pattern Analysis for Forecasting of Customer's Electricity Demand (수요측 전력사용량 예측을 위한 수요패턴 분석 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Yu, In-Hyeob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1342-1348
    • /
    • 2008
  • One important objective of the electricity market is to decrease the price by ensuring stability in the market operation. Interconnected to this is another objective; namely, to realize sustainable consumption of electricity by equitably distributing the effects and benefits of participating in the market among all participants of the industry. One method that can help achieve these objectives is the ^{(R)}$demand-response program, - which allows for active adjustment of the loadage from the demand side in response to the price. The demand-response program requires a customer baseline load (CBL), a criterion of calculating the success of decreases in demand. This study was conducted in order to calculate undistorted CBL by analyzing the correlations between such external or seasonal factors as temperature, humidity, and discomfort indices and the amounts of electricity consumed. The method and findings of this study are accordingly explicated.

Geometry and load effects on transient response of a VFGM annular plate: An analytical approach

  • Alavia, Seyed Hashem;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.179-197
    • /
    • 2019
  • In this article, the effect of different geometrical, materials and load parameters on the transient response of axisymmetric viscoelastic functionally graded annular plates with different boundary conditions are studied. The behavior of the plate is assumed the elastic in bulk and viscoelastic in shear with the standard linear solid model. Also, the graded properties vary through the thickness according to a power law function. Three types of mostly applied transient loading, i.e., step, impulse, and harmonic with different load distribution respect to radius coordinate are examined. The motion equations and the corresponding boundary conditions are extracted by applying the first order shear deformation theory which are three coupled partial differential equations with variable coefficients. The resulting motion equations are solved analytically using the perturbation technique and the generalized Fourier series. The sensitivity of the response to the graded indexes, different transverse loads, aspect ratios, boundary conditions and the material properties are investigated too. The results are compared with the finite element analysis.

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

Improved definition of dynamic load allowance factor for highway bridges

  • Zhou, Yongjun;Ma, Zhongguo John;Zhao, Yu;Shi, Xiongwei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.561-577
    • /
    • 2015
  • The main objective of this paper is to study the dynamic load allowance (DLA) calculation methods for bridges according to the dynamic response curve. A simply-supported concrete bridge with a smooth road surface was taken as an example. A half-vehicle model was employed to calculate the dynamic response of deflection and bending moment in the mid-span section under different vehicle speeds using the vehicle-bridge coupling method. Firstly, DLAs from the conventional methods and code provisions were analyzed and critically evaluated. Then, two improved computing approaches for DLA were proposed. In the first approach, the maximum dynamic response and its corresponding static response or its corresponding minimum response were selected to calculate DLA. The second approach utilized weighted average method to take account of multi-local DLAs. Finally, the DLAs from two approaches were compared with those from other methods. The results show that DLAs obtained from the proposed approaches are greater than those from the conventional methods, which indicate that the current conventional methods underestimate the dynamic response of the structure. The authors recommend that the weighted average method based on experiments be used to compute DLAs because it can reflect the vehicle's whole impact on the bridge.