• 제목/요약/키워드: Load resistance

Search Result 2,437, Processing Time 0.032 seconds

Influence of Bias Weight of Vibratory Pile Driver on Load Transfer Characteristics of Piles (진동타입기의 사하중이 말뚝의 하중전이 특성에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5268-5273
    • /
    • 2013
  • Technique for analyzing pile installed by vibratory pile driver was developed and results of analysis obtained from variation of bias weight were studied. It can be seen from load transfer curve for dynamic skin friction that load transfer curve shift to downward as bias weight increases. Shape of load transfer curve for dynamic skin friction becomes closer to shape of coil as the bias weight decreases. Magnitudes of toe resistances were not affected by the bias weight. Shape of load transfer curve for dynamic toe resistance shows the similar tendency as the load transfer curve for skin friction exhibits. Vertical displacement increases as the bias weight increases and the shape of vertical displacement with time shows more distinct shape of wave.

Physical and Mechanical Properties of PP Fiber Reinforced Concrete for Binder Course in Landscape Paving (조경용 포장 중간층에 사용가능한 PP섬유 보강 콘크리트의 물리·역학적 특성연구)

  • Jun, Hyung-Soon;Lee, Jae-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • The mechanical properties appeared at the concrete mixed with Polypropylene fiber($1kg/m^3$, $3kg/m^3$, $5kg/m^3$) are compared with normal concrete and wire mesh one and evaluated. Achieved slump test to search effect that PP fiber gets to workability, even if the mixing amount of fiber increases, confirmed that slump value is no change almost. The no difference can be caused by hard mixture, but because of the big softness of fiber there is no effect greatly up to PP fiber mixing amount $5kg/m^3$ even with soft mixture. Compressive strengths and flexural strengths of the concretes with PP fiber and without the fiber are appeared almost alike. If examine load resistance ability by PP fiber mixing amount increase, it could know that the increase of fiber mixing amount improves load resistance ability and the toughness index is increased. While normal concrete is broken at the same time with crack, fiber mixed concrete stand in flexure load continuously after crack occurrence. In compare with wire mesh embeded concrete, wire mesh mixed concrete stands in some degree in flexure load by wire mesh crack occurrence and the test piece was broken at the same time. But, it could know that the PP fiber mixed concrete resist continuously to flexure load in bigger displacement.

Reliability Analysis of Single and Continuous Span Composite Plate and Box Girder Designed by LRFD Method under Flexure (LRFD법으로 설계된 단경간 및 연속경간 강합성 플레이트 거더 및 박스 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong Ku;Roh, Joon Sik;Cho, Eun Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • The reliability analysis of simply-supported and continuous composite plate girder and box girder bridges under flexure was performed to provide a basic data for the development of LRFD c ode. The bridges were designed based on LRFD specification with newly proposed design live load which was developed by analyzing traffic statistics from highways and local roads. A performance function for flexural failure was expressed as a function of the flexural resistance of composite section and the design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 domestic structural steel samples were used. Several different values of bias factors for the live load moment from 1.0 to 1.2 were used. Due to the lack of available domestic measured data on the moment by permanent loads, the same statistical properties used in the calibration of ASHTO-LRFD were ap plied. The reliability indices for the composite girder bridges with various span lengths, different live load factors, and bias fact or for the live load were obtained by applying the Rackwitz-Fiessler technique.

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Assessment of Partial Safety Factors for Limit States Design of Foundations (한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가)

  • Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.77-89
    • /
    • 2004
  • While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome (정20면체 모듈러 돔의 형상모델링 및 구조안정성에 관한 연구)

  • Shon, Su-Deok;Woo, Hyo-Jun;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.

A Study on Test Methods for Performance Appraisal of Root Barrier Appling to Green Roofs (옥상 및 인공지반녹화용 방근재의 성능기준 설정을 위한 방근성 시험방법에 관한 연구)

  • Oh, Sang-Keun;Kwak, Kyu-Sung;Sun, Yoon-Suk;Kwon, Shi-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.79-84
    • /
    • 2007
  • Selection of proper root barrier as destination part of greening is very important in Root penetration resistance plan. To select proper root barrier, it need to understand composition of greening part, size, kind of plant, connection with waterproofing layer. In this point of view, we have establish greening on the roof or concrete structure, not been understand the structural mechanism. It means that we misunderstood about purpose of greening and using it. So, chosen materials and construction method was not proper for greening, it caused water leakage and decrease performance of concrete structure. Therefore, we would suggest 5 items of test methods considering environmental condition for green roof. Watertightness by water of greening part, root penetration resistance test by root penetration, bacteria resistance by must or bacteria in soil, chemical resistance by rain and chemical agent of fertilizer, and load resistance by soil depth, size of plant. These suggested test methods could be referred as guideline to test in green roof system because of not exist any performance appraisal guideline or standard. Consequently, it should be analysis as technical and institutional subdividing test methods and it need to study constantly as varied angles.

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Material Resistance Factors for Reinforced Concrete Flexural and Compression Members (철근콘크리트 휨부재 및 압축부재의 재료조항계수 적용에 관한 연구)

  • 김재홍;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • In the Ultimate Strength Design, the design strength of a member is determined by multiplying the strength reduction factor to the nominal strength. This concept may be a reasonable approach, however it can not consider failure modes appropriately. Moreover, column design strength diagram show an abrupt change at a low level of axial load, which does not seem to be reasonable. This research compares the design strength determined by the strength resistance factors. As the material resistance factors for flexure and compression, 0.65 and 0.90 are proposed for concrete and steel, respectively. The design strength calculation process by applying material resistance factors addresses failure modes more effectively than by applying member strength reduction factor, and provides more resnable design strength for reinforced concrete flexural and compression members.