• Title/Summary/Keyword: Load reduction

Search Result 2,338, Processing Time 0.031 seconds

Assessing Impact of Reduction of Non-Point Source Pollution by BASINS/HSPF (HSPF를 이용한 비점오염원 삭감에 따른 효과 분석)

  • Bae, Dae-Hye;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to assessing impact of reduction of non-point source pollution in the Bokha Stream watershed. The BASINS/HSPF model was calibrated and verified for water flow and water qualities using Total Maximum Daily Load 8days data from 2006 to 2007. Accuracy of the BASINS/HSPF models in simulating hydrology and water quality was compared and there were somewhat differences of statistical results, but water flow and water quality were simulated in good conditions over the study period. The applicability of models was tested to evaluate non-point source control scenarios to response hydrology and water quality in the Bokha stream using various measures which include BMPs approach and change of landuse. The evaluation of reduction of non-point source pollution was developed using load-duration curve. Despite strong reduction of non-point source, there are not satiated target quality at low flow season.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

A Study on Development of Remote Management Controller for Intelligent Power Equipment (지능형 전원설비의 원격관리제어기 개발에 관한 연구)

  • Lim, Byung-Kuk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2006
  • In this study, we research and develope Intelligent Remote management controller. According to the load condition, we will apply various control techniques and plan high efficient Demand control. After development, According to the Demand Control, An electricity enterprisers will expect enlargement of equipment coefficient, elevation of back up load factor and reduction effect of equipment investment. On Customer side, They will expect reduction of electric fee, saving energy and variety of service choice.

  • PDF

Application of Conservation Voltage Reduction using Automatic Voltage Regulator of Linear Voltage Control in Campus Microgrid with Power Consumption Reduction (에너지 절감을 고려한 캠퍼스 마이크로그리드에서 선형 전압제어 방식의 AVR을 이용한 CVR의 적용)

  • Lim, Il-Hyung;Lee, Myung-Hwan;Shin, Yong-Hark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1039-1046
    • /
    • 2017
  • Campus microgrid is designed and built by considering not only power generation but also power consumption management as connected microgrid type because the main goal of the campus microgrid is to save power consumption costs. There are many functions to achieve the goal and they are mainly to use generation-based functions such as islanding operation for peak management and for emergency events. In power distribution operation, Conservation Voltage Reduction (CVR) is applied in order to reduce power consumption. The CVR is defined as a function for load consumption reduction by voltage reduction in order to reduce peak demands and energy consumption. However, application of CVR to microgrid is difficult because the microgrid cannot control a tap of transformer in a substation and the microgrid normally is not designed with phase modifying equipment like a step-voltage-regulator which can control voltage in power distribution system operation. In addition, an impact of the CVR is depended on load characteristics such as a normal load, a rated power, and synchronous motors. Therefore, this paper proposes an application of CVR using linear voltage control based AVR in campus microgrid with power consumption reduction considering characteristics of load and component in the microgrid. The proposed system can be applied to each buildings by a configuration of power distribution cables; and the application results and CVR factor are presented in this paper.

Parametric Study on Lateral Vibration Model of Steel Sheet Pile (강널말뚝의 횡방향 진동모델에 대한 매개변수 연구)

  • Lee, Seung-Hyun;Kim, Byung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1047-1052
    • /
    • 2010
  • Influence of lateral spring constant on energy dissipation and load reduction factor with erespect to lateral vibration of steel sheet pile installed by vibratory pile driver. Energy dissipation and load reduction factor varying with free length of steel sheet pile are more affected by eccentricity than flexural rigidity of steel sheet pile regardless of the magnitudes of lateral spring constants. Load reduction factors were converged when lateral spring constant was equal or larger than 10000N/m.

An Active Output Filter with a Novel Control Strategy for Passive Output Filter Reduction

  • Choi, Kyusik;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1036-1045
    • /
    • 2016
  • This paper presents a novel control strategy for passive output filter reduction using an active output filter. The proposed method achieves the dual-function of regulating the output voltage ripple and output voltage variation during load transients. The novel control strategy allows traditional simple voltage controllers to be used, without requiring the expensive current sensors and complex controllers used in conventional approaches. The proposed method is verified with results from a 125-W forward converter.

Waste Load Allocation of Hwanggujicheon Watershed Using Optimization Technique (최적화기법을 이용한 황구지천유역의 오염부하량 할당)

  • Cho, Jae Heon;Chung, Wook Jin;Lee, Jong Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.728-737
    • /
    • 2005
  • Water quality of the Hwanggujicheon is poor because of the rapid housing and development in the large area of the basin. Establishment of water quality management strategy, based on the pollution sources survey and pollutant loads estimation, has to be established for the preservation of the stream water quality of the region. In this study, waste load allocation model to achieve the water quality goal of the stream and the optimization of pollutant load reduction, was developed. Nonpoint pollutant loads calculated by runoff model in the previous study are utilized for pollutant loads estimation of the drainage areas in this study. From the application result of the allocation model, water quality goals of the Hwanggujicheon that can be achieved as a matter of fact are BOD 8 mg/L. To achieve these goals, 23% of effluent BOD loads have to be reduced in the basin.

Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay (생태계모텔에 의한 진해만의 빈산소수괴 저감예측)

  • Lee, In-Cheol;Kong, Hwa-Hun;Yoon, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • As a basic study for establishing a countermeasure for an oxygen deficient water mass (ODW), we investigated the variation of ODW volume according to the enforced total pollution load management in Jinhae Bay. This study estimated the inflowing pollutant loads into Jinhae Bay and predicted the reduction in ODW by using a sediment-water ecological model (SWEM). The result obtained in this study are summarized as follows: 1) The daily average pollutant loads of COD, SS, TN, TP, DIN, and DIP inflowing into Jinhae bay in 2005 were estimated to be about 12,218 kg-COD/day, 91,884 kg-SS/day, 5,292 kg-TN/day, 182 kg-TP/day, 4,236 kg-DIN/day, and 130 kg-DIP/day. 2) The calculated results of the tidal current by the hydrodynamic model showed good agreement with the observed currents. Also, an ecological model well reproduced the spatial distribution of the water quality in the bay. 3) This study defined the ODWDI (ODW decreasing index) in order to estimate the ODW decreasing volume caused by a reduction in the inflowing pollutant loads. As a result, the ODWDI was predicted to be about 0.91 (COD 30% reduction), 0.87 (COD 50% reduction), 0.79 (COD 70% reduction), 0.85 (ALL 30% reduction), 0.66 (ALL 50% reduction), and 0.45 (ALL 70% reduction). The ODW volume was decreased 1.5 $\sim$ 2.6 times with a reduction in the COD, TN, and TP inflowing pollutant loads compared to a reduction in just the COD inflowing pollutant load. Therefore, it is necessary to enforce total pollution load management, not only for COD, but also fm TN and TP.

Crack Stability Evaluation of Nuclear Main Stream Pipe Considering Load Reduction Effect (하중감소효과를 고려한 원자력 주증기 배관의 균열 안정성 평가)

  • Koh, Bong-Hwan;Kim, Yeong-Jin;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1843-1853
    • /
    • 1996
  • The objective of this paper is to evaluate the crack stability of the nuclear main stresm pipes, considering the load reduction effect due to the presence of circumferential throuth-wall crack. Also, the optimization techniques are adoped tosimulate the crack effect on the elbow component of the piuping system. By using a general beam elemetn which contains a discontinuous cross-section, the piping analysis is accomplished to acquire the reduced load. Considering this reduced load, it is feasible for the LBB application in nuclear main stresm pipe. Also, by combining an optimization program and a genaral finite element analysis program, the appropriate dimensions of the simplified beam elemtn which represents the effect of crack in elbow could be successfully determined.

A Study on the Intelligent Load Management System Based on Queue with Diffusion Markov Process Model (확산 Markov 프로세스 모델을 이용한 Queueing System 기반 지능 부하관리에 관한 연구)

  • Kim, Kyung-Dong;Kim, Seok-Hyun;Lee, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.891-897
    • /
    • 2009
  • This paper presents a novel load management technique that can lower the peak demand caused by package airconditioner loads in large apartment complex. An intelligent hierarchical load management system composed of a Central Intelligent Management System(CIMS) and multiple Local Intelligent Management Systems(LIMS) is proposed to implement the proposed technique. Once the required amount of the power reduction is set, CIMS issues tokens, which can be used by each LIMS as a right to turn on the airconditioner. CIMS creates and maintains a queue for fair and proper allocation of the tokens among the LIMS requesting tokens. By adjusting the number tokens and queue management policies, desired power reduction can be achieved smoothly. The Markov Birth and Death process and the Balance Equations utilizing the Diffusion Model are employed for evaluation of queue performances during transient periods until the static balances among the states are achieved. The proposed technique is tested using a summer load data of a large apartment complex and give promising results demonstrating the usability in load management while minimizing the customer inconveniences.