• Title/Summary/Keyword: Load power factor

Search Result 847, Processing Time 0.027 seconds

Module UPS of multi-parallel operation for use in information & telecommunication systems (정보통신용 다병렬 운전의 모듈식 무정전전원장치)

  • Koo, Tae-Geun;Ryu, Ji-Su;Bae, Sang-Gyu;Park, Keun-Kap
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.390-393
    • /
    • 2007
  • The reliability as well as the power capability of the UPS system can be increased by replacing a single UPS unit with multiple small UPS units in parallel, resulting in a so-called module UPS. This module UPS system allows that a new module can be added or replaced while maintaining power to loads, which is a hot-swappable operation. In addition, it has desirable features such as ease of output power expandability, convenience of maintenance and repair, and high reliability. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. 5kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the module UPS system has a high power factor, a low distortion of output voltage and input current, hot-swappable operations and good load sharing characteristics.

  • PDF

Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm (유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계)

  • Jeong, Hyeong-Hwan;Wang, Yong-Pil;Lee, Jeong-Pil;Jeong, Mun-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

A Study on Improving Power Quality by Real-time Reactive Power/Power Factor Compensating Equipment at Substation in Marshalling Yard (전기철도 차량기지 변전소의 실시간 무효전력/역률 보상설비 적용에 따른 전력품질 개선에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.58-67
    • /
    • 2006
  • In this paper, real-time reactive power/power factor compensating equipment is suggested for improving power quality at electrical railway's substation in marshalling yard and designing optimal capacity of compensating equipment for actual apply at current marshalling yard. For this purpose, several kind of real-time reactive power/power factor compensating equipments are introduced and SVG(Static Var Generator) as optimal compensating equipment that is suitable for load characteristics of substation in marshalling yard is suggested. This paper shows proper simulations by suggested equipment using PSIM software and describe basic compensating principle and simulation results. Optimal capacity design for applying current marshalling yard is based on real measured power quality data. Power quality improvement that is performed by SVG as real-time reactive power/power factor compensating equipment is estimated at electrical railway's substation in marshalling yard. As reference, real-time reactive power/power factor compensating equipment is composed by voltage source inverter and DC capacitors.

Optimum Design of a Wind Power Generation System through Analysis of Wind Data (풍속자료(風速資料) 분석(分析)에 의한 풍역발전(風力發電)시스템 최적(最適) 설계(設計))

  • Lee, Chul-Hyung;Shin, Dong-Ryul
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.3-12
    • /
    • 1984
  • In this paper, how to design the wind power generation system is presented. It is shown that the wind system optimization can be achieved by consideration of the four factors; wind statistics, efficiency of conversion of wind energy to electrical energy, average annual energy extracted and load factor. The wind is characterized by a weibull probability function. The Weibull parameter is calculated for the characterizing wind and the primary design specification of ten different sites. Some graphs are presented, which can be used to design a wind system for maximum output of a specified load factor at given site. Two different systems, $V_c=0.4V_R$ and $V_c=0.5V_R$ are discussed, as samples, for investigation of the effects on the system through the variation of cut-in speed.

  • PDF

A study on capacitive transformer (용량성배전변압기에 관한 연구)

  • Sung Won Rhee
    • 전기의세계
    • /
    • v.18 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

A Study on the PFC of Inverter TIG Welder with Dynamic Load Characteristics (동적 부하 특성을 갖는 인버터 TIG 용접기의 역률 개선에 관한 연구)

  • Lee, T.W.;Kim, J.M.;Won, C.Y.;Kim, K.S.;Choi, K.H.;Mok, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2121-2123
    • /
    • 1998
  • In recent years, A PWM Converter or Switched Mode Converter with high power factor and sinusoidal input current have got widespread studied. But, Almost all of studies is based on linear load. This paper reports on research aimed at achieving high power factor and sinusoidal input current waveform for electronic arc welder, which has nonlinear dynamic characteristics. It is shown that simulation result yield its property.

  • PDF

A Development of CRU for KODAS (한국형 배전자동화용 수용가 단말제어장치 개발)

  • Kim, Jong-Soo;Kye, Moon-Ho;Oh, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.419-421
    • /
    • 1994
  • A CRU (Customer Remote Unit) for KODAS(Korea Distribution Automatic System) is presented in the paper. This equipment works as a terminal unit for the Load Control and the AMR(Automatic Meter Reading). It is composed of control, drive, input, display, and communication parts. A CRU calculates and memorizes the active power, time-of-use, and demand by the pulse from watthour meter for AMR. It also transfers the data to Center Control System. It can measure current, voltage, and power factor by adding the simple circuit. For load control, It receives the necessary informations such as the load control periods, modes, and time intervals. It controls the load until the stopping commad comes. The system reliability has been proved using a prototype.

  • PDF

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

Analysis of MLF Characteristics on 12 Load Levels (부하수준 별 한계손실계수 변동특성 분석)

  • Mun, Yeong-Hwan;Kim, Ho-Yong;;Sim, U-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.284-289
    • /
    • 2002
  • The transmission networks do not consist of perfect conductors and a percentage of the power generated is therefore lost before it reaches the loads. Since this network loss contributes to the cost of suppling power to consumers, it must be considered that the most efficient dispatch and location of generators and loads are to be achieved. In this paper, marginal loss factors are calculated for 12 load levels that represent the impact of marginal network losses on nodal prices at the transmission network connection points at which generators are located. Based on comparison analysis of marginal loss factors on 12 load levels, we found the MLF characteristics in KOREA.

Weekly maximum power demand forecasting using model in consideration of temperature estimation (기온예상치를 고려한 모델에 의한 주간최대전력수요예측)

  • 고희석;이충식;김종달;최종규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF