• Title/Summary/Keyword: Load monitoring

Search Result 1,009, Processing Time 0.033 seconds

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation (다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘)

  • Kim, Imgyu;Kim, Hyuncheol;Kim, Seung Yun;Shin, Sangyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.21-28
    • /
    • 2021
  • In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Real-time fluvial sediment load monitoring method using H-ADCP and support vector regression (H-ADCP와 서포트벡터회귀를 이용한 실시간 하천 유사량 모니터링 방법)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.25-25
    • /
    • 2022
  • 하천의 개발 및 보전 계획을 수립하는 데에 있어 자연하천의 부유사량 및 총유사량을 계측하는 것은 매우 중요하다. 우리나라에서는 매년 국내 자연하천을 대상으로 부유사량을 실측하고 실측 부유사량을 바탕으로 수정 아인슈타인 방법을 적용해 총유사량을 산정하고 있으나 이 또한 홍수기에 국한되어 있다. 가장 일반적인 유사량 계측 방법인 시료 채집에 의한 방법은 많은 노력과 비용을 수반하기 때문에 유사량 관측소와 관측 빈도를 늘릴 수 없는 실정이다. 최근에는 ADCP 음파 신호의 후방산란도가 부유사 농도에 따라 증가한다는 성질을 이용해 부유사 농도 계측에 ADCP를 이용하고자 하는 노력이 계속되고 있다. 이러한 특성을 이용해 본 연구에서는 전라남도 나주시에 위치한 남평교 자동유량관측소에 설치된 횡방향 ADCP (H-ADCP)를 대상으로 서포트 벡터 회귀(SVR)를 적용한 실시간 유사량 모니터링 모형을 제안하였다. 여기서 제시하는 유사량산정 모형은 크게 유량과 초음파 산란도를 입력 변수로 해 부유사 농도를 산정하는 서포트 벡터 회귀 모형과 첫 번째 모형으로부터 산정된 부유사 농도와 흐름 정보를 이용해 총유사량을 산정하는 모형으로 구성되어 있다. 개발된 SVR 부유사량 및 총유사량 산정 모형의 정확도가 결정계수(R2) 기준으로 각각 0.82, 0.90 으로 나타났다. 주목할 점은, 본 연구에서 제시하는 SVR 모형을 이용해 멱함수 기반 유사량 관계식으로는 예측할 수 없는 유사량의 이력현상을 재현해낼 수 있다는 것이다. 본 연구에서 제시하는 H-ADCP 기반 총유사량 모니터링 방법은 기존 자동 유량 관측소 시설을 그대로 이용할 수 있다는 장점이 있다. 따라서 실무 적용 시 낮은 추가비용으로 양질의 유사량 모니터링이 가능할 것으로 기대된다.

  • PDF

A Smart Car Seat System Detecting and Displaying the Fastening States of the Seat Belt and ISOFIX (안전벨트와 아이소픽스의 체결 상태를 감지하여 알려주는 스마트 카시트 시스템)

  • SeungHeun Park;Sangeon Jeon;Beonghoon Kong;seunghwan Kim;Seung Hee Shin;Won-tak Seo;Jae-wan Lee;Min Ah Kim;Chang Soon Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.87-102
    • /
    • 2023
  • Existing child car seats do not have a monitoring means for the driver or guardian to effectively recognize the status of whether the seat belt of car seat is fastened and whether the ISOFIX of the car seat is fastened to the inside device of the vehicle. In this paper, we propose a smart car seat system which can monitor in real time, whether the seat belt of a child seated in the car seat is fastened and whether the ISOFIX of the car seat is fastened. The proposed system has been developed with a prototype, in which a Hall sensor, magnet, Bluetooth, and display device are used to detect whether these are fastened and to display the detection results. The prototype system provides the detection results as texts and alarm signal to the display for driver or guardian' smartphone in the car in motion. With functional tests of the prototype system, it was confirmed that the detection functions are properly operated, and the detection results were transmitted to the display device and smartphone via Bluetooth within 0.5 seconds. It is expected that the development system can effectively prevent safety accidents of child car seats.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

An Analysis of the Long-term Behavior of the Cable System in the Suspension Bridge (현수교 케이블 시스템의 장기거동 분석)

  • Ryu, Duck-Yong;Kim, See-Dong;Jung, Hie-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.135-144
    • /
    • 2009
  • The cable system of suspension bridges is a very important non-elastic element which caries an external load by a tension force of the cable, such that creates the integrity of a structure. It is not easy to find if cable system have been changed by the maintenance activities such as repairs or reinforcement. Sometimes the maintenance can cause structural deformations and changes of the tension force in cables. In most cases, the cable stayed bridges are managed by health monitering system, however, the main cable of suspension bridges need to develop more accurate and efficient monitoring system. The Namhee Bridge was constructed 35 years ago and it has been continually repaired and reinforced after then. This study describes the behavior of the cable system by analysing many of inspective reports and by using the results of hanger rope test and for the shape of main cables surveys.