Flow and pollution load were monitored at 2 combined sewer outlets (C-1 and C-2) of urban watersheds during dry weather from September, 2004 to April, 2006 for 20 months. The objectives were to investigate the diurnal variation of flow and pollutant load and to find the proper sampling time that could measure representative flow and pollutant load. Pollution load closed to the average daily load at C-1 could be measured at 00:00 hour and by the mean of 15:00 and 18:00 hour measures, and 15:00 and 21:00 hour measures, respectively. In addition at C-2, it was 21:00 hour and the mean of 15:00 and 18:00 hour measures. This study concluded that arbitrary sampling of flow and water quality could cause large errors in the estimation of urban pollution load and recommended that urban combined sewers should be monitored when flow and water quality showed daily average and concentration.
본 논문은 단선터널 라이닝의 최적 계측 측점수를 산정하기 위해 단순보 형태로 모델링하여 터널 라이닝 역해석 프로그램에 적용한 결과와 상용 프로그램에 적용한 결과를 상호 비교하여 평가하였다. 단선터널을 대상으로 터널 라이닝에 대칭 분포하중이 작용하는 경우와 비대칭 분포하중이 작용하는 경우로 가정하여 터널해석 시 널리 사용되는 상용 프로그램에 하중조건을 입력시켜 터널 라이닝의 단면 위치별 변위와 응력을 산출하였다. 산출된 변위를 계측 측점수 3점, 5점, 7점으로 터널 라이닝 역해석 프로그램에 입력시켜서 구한 응력과 변위를 비교하여 최적 계측 측점수를 산정하였다. 연구결과 실무적으로 계측 수행의 경제성과 터널 계측의 손망실률을 고려한 계측 측점수가 최소 5점은 되어야 할 것으로 판단된다.
When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.
This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.
The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.
Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
Steel and Composite Structures
/
제46권6호
/
pp.731-744
/
2023
Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.
Recent technology advancement related to computer & communication and measuring devices allows system operators to adopt more intelligent monitoring and control systems to their power systems in order to prevent massive system blackout. Among them, wide-area monitoring and control(WAMAC) system based on synchro-phasor technology has been widely applied to power systems for their own purposes. In this paper, the study on the development of load shedding scheme to improve voltage stability in KEPCO system is introduced. Summary of WAMAC technology being developed and applied in the world through extensive literature survey is proposed. And methodology to develop voltage stability index and multi-step load shedding scheme based on synchro-phasor data is also presented.
This paper proposes a multiple switch mode power supply (SMPS) system based on the wireless network which controls variable load. The system enables power supply of up to 600W using 200W SMPS as a unit module and provides a controlling function of output power based on variable load and a monitoring function based on wireless network. The controlling function for output power measures the variation of output power and facilitates efficient power supply by controlling output power based on the measured variation value. The monitoring function guarantees a stable power supply by observing the multiple SMPS system in real time via wireless network. The performance of the proposed system was examined by various experiments. In addition, it was verified through standardized test of Korea Testing Certification. The results were given and discussed.
유비쿼터스 지능공간 모니터링 시스템은 유비쿼터스 지능공간 내에서의 다양한 스마트 객체의 기능, 성능 및 상태를 모니터링하고 분석함으로써 사용자 지수, 서비스의 통합 동작 상황, 서비스의 상태를 판단할 수 있는 정보를 실시간으로 제공해준다. 또한 최적화 및 자기 관리를 통하여 서비스 성능을 향상시킬 수 있는 기능을 제공한다. 이러한 실시간 모니터링 시스템의 적용범위를 확장하기 위해서는 유동적인 대량의 데이터 처리가 필요하다. 본 논문에서는 모니터링 시스템을 구성하는 스마트 객체의 데이터 발생에 따라 유발되는 에이전트들의 부하를 해결하기 위해 부하를 예측하여 미리 분산시키는 기법을 제안한다. 제안된 기법이 적용된 시스템은 실험을 통해 기존의 시스템에 비해 전체 데이터 마감시간 초과율이 매개변수가 1일 경우, 80%이상 감소됨을 보여준다.
1999년 부산광역시에서 발생한 황령산 산사태는 평면파괴 형태였다 그 후, 황령산 절개사면은 재시공 되었으며 최종 구배는 1:2.0이었다. 수평변위, 간극수압 및 축력을 측정하기위하여 공사중인 2000년 8월부터 2002년 2월까지 파괴사면에 대한 계측이 실시되었다. 계측결과를 종합 고려하면, 강우량에 비례해서 간극수압이 증가되지만 강우 후 지반의 압력수두가 신속히 감소하여, 지표에서 유입된 강우가 사면을 따라 신속히 배출되는 것으로 사료된다. 또한, 경사계 및 하중계 계측자료의 분석결과, 지반의 거동은 거의 없으므로, 사면도 안정된 것으로 사료된다. 특히 본 연구지역과 같이 강우와 관련된 산사태 지역의 경우 자동화 계측을 통해서 간극수압의 신속한 증감을 알 수 있었으며, 추후 이러한 주요 시설 사면에서 자동화 방식에 의한 계측관리가 사면의 안정성을 판단하는데 더욱 효과적일 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.