• Title/Summary/Keyword: Load monitoring

Search Result 999, Processing Time 0.031 seconds

Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 감시를 위한 무선 센서)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.98-102
    • /
    • 2008
  • Methods and analysis of a simple wireless sensor concept for detecting and locating faults as well as for load monitoring are presented. The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

Temperature Analysis of PSC Box-girder Bridges Using Inverse Thermal Analysis Program (온도분포 역해석 프로그램을 이용한 PSC 박스거더 교량 단면의 온도 분포 해석)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Myung-Kue
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.95-101
    • /
    • 2006
  • It is well known that the thermal load in PSC(prestressed concrete) box-girder bridge is the principal cause of detrimental crack. The longitudinal stress caused by the lateral stress from the temperature gradient in slab of PSC box-girder bridge has a considerable influence on the durability and economy of bridge structures. As the basic study for the rational consideration of thermal load and the derivation of design guide, the inverse thermal analysis program for PSC box-girder bridges using field measurement data is developed. In this paper, thermal analyses are performed using field monitoring data for the sample PSC box-girder bridge. It is proposed that the link between monitoring program and the inverse analysis program is available.

A Review of Window Query Processing for Data Streams

  • Kim, Hyeon Gyu;Kim, Myoung Ho
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.220-230
    • /
    • 2013
  • In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time. The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation, join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window queries, which are supported in many stream processing engines. We also review the related work on stream query processing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.

Development target of intelligent DAS with the function of distribution transformer monitoring (배전변압기 감시제어 기능이 통합된 지능형 배전자동화 시스템 개발 방향)

  • Ha, Bok-Nam;Seol, Lee-Ho;Park, Shin-Yeol;Jeong, Yeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.554-556
    • /
    • 2005
  • Distribution Automation System (DAS) will provide supervision and remote control of switches and reclosers such as pole pounted switches and pad-mounted switchgears on high voltage distribution line. Kepco had developed basic function such as remote monitoring, remote control, remote measuring and remote setting at first. As a next step, Kepco has been developed diverse application programs such as single line diagram drawing program, relay coordination program, feeder reconfiguration program, over load elimination program, bad data detection program, section load management program, fault processing program and so on. Kepco is examining to develop more powerful functions for special specification of foreign distribution automation system. This paper explains what is the target for overseas DAS market.

  • PDF

Development of Adaptive Home Power Peak-Cut Control System Using Power Line Communication (전력선통신을 이용한 소규모 주택용 맞춤형 전력피크 제어시스템 개발)

  • Kim, Sang-Dong;Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.219-226
    • /
    • 2016
  • In this paper, adaptive home power peak-cut control system is developed using PLC. The developed scheme provides monitoring of power usage, power peak-cut control and additional function. In test bed, zone is presented by bedroom, living room, kitchen and bathroom. And individual load is presented by lighting, heater and fan in zone. In developed scheme, zone control is implemented by single PLC modem. And individual load control is implemented by key-map table. In addition, power peak-cut control system S/W, which can perform setting of power peak, power peak-cut control and monitoring of power usage.

WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES (태양광/풍력 발전설비의 웹기반 모니터링기술)

  • Park, Se-Jun;Yoon, Jeong-Phil;Cha, In-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

A Study on the Prediction of Die Wear Based on Piezobolt Sensor Measurement Data in the Trimming Process of an Automobile Part (피에조 볼트 측정 데이터에 기반한 자동차 부품 트리밍 공정에서의 금형 마모 예측 연구)

  • Kwon, O.D.;Moon, H.B.;Kang, G.P.;Lee, K.;Hur, M.C.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • Systematic quality control based on real time data is required for modern factories. This study introduced a method of predicting punch wear in the trimming process of automobile parts. Based on monitoring data of the mass production process using a bolt-type piezo sensor, it was shown that precursor symptoms of die wear could be predicted from the change in load pattern with respect to production volume. The load pattern that changed according to the wear of the die was verified by numerical analysis.

Structural monitoring of wind turbines using wireless sensor networks

  • Swartz, R. Andrew;Lynch, Jerome P.;Zerbst, Stephan;Sweetman, Bert;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Monitoring and economical design of alternative energy generators such as wind turbines is becoming increasingly critical; however acquisition of the dynamic output data can be a time-consuming and costly process. In recent years, low-cost wireless sensors have emerged as an enabling technology for structural monitoring applications. In this study, wireless sensor networks are installed in three operational turbines in order to demonstrate their efficacy in this unique operational environment. The objectives of the first installation are to verify that vibrational (acceleration) data can be collected and transmitted within a turbine tower and that it is comparable to data collected using a traditional tethered system. In the second instrumentation, the wireless network includes strain gauges at the base of the structure. Also, data is collected regarding the performance of the wireless communication channels within the tower. In both turbines, collected wireless sensor data is used for off-line, output-only modal analysis of the ambiently (wind) excited turbine towers. The final installation is on a turbine with embedded braking capabilities within the nacelle to generate an "impulse-like" load at the top of the tower. This ability to apply such a load improves the modal analysis results obtained in cases where ambient excitation fails to be sufficiently broad-band or white. The improved loading allows for computation of true mode shapes, a necessary precursor to many conditional monitoring techniques.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.