• Title/Summary/Keyword: Load modulation

Search Result 326, Processing Time 0.025 seconds

Steady-State Torque Pulsations in Current Source Inverter Fed Induction Motor Drives (전류원 인버터로 구동되는 유도전동기의 맥동토오)

  • 신휘범;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-204
    • /
    • 1988
  • A simple method that estimates the torque fluctuations in induction motor driven by CSI under steady state condition is presented and that uses the phasor diagram from the modified singlephase equivalent circuit. This method is also applied to evaluate the PWM and programmed do link modulation techniques for reducing the torque pulsations. The simplified calculations are compared with the exact digital solutions from machine D-Q equation. It is noted that the torque pulsations in induction motor driven by CSI are dependent upon the load condition unlike VSI.

  • PDF

DPWM Control of Triple Active Bridge Converter for loss reduction at light load (경부하 손실 저감을 위한 트리플 액티브 브리지 컨버터의 DPWM 제어)

  • Lee, Sungmin;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.298-299
    • /
    • 2020
  • Triple Active Bridge 컨버터의 경부하 조건에서의 효율 개선을 위해 브리지의 듀티와 위상을 동시에 변경하는 Dual Pulse Width Modulation(DPWM)기법을 적용하였다. 기존의 위상천이기법은 제어가 단순한 장점이 있으나 경부하 조건에서 효율이 급격히 감소하는 단점이 존재한다. 따라서 본 논문에서는 DPWM 방식을 통해 경부하 조건의 효율 개선을 위한 각 브리지 듀티, 위상각을 분석하였고, 시뮬레이션을 통해 이를 검증하였다.

  • PDF

3-Dimensional SVM Technique for the Three-Phase Four-Leg Voltage Source Inverter System (3상 4레그 전압형 인버터를 위한 3차원 공간벡터변조 기법)

  • Doan, Van-Tuan;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.111-112
    • /
    • 2013
  • The three-phase four-leg voltage source inverter (VSI) topology can be an interesting option for the three phase-four wire system. With an additional leg, this topology can handle the neutral current, hence the DC link capacitance can be reduced significantly. In this paper the three dimensional space vector modulation (3D SVM) in ${\alpha}{\beta}{\gamma}$ coordinates for the three-phase four-leg VSI is presented. By using the 3D SVM method, the DC link voltage can be reduced by 16% compared with the split DC link capacitor topology and the output distortion can also be reduced under the unbalanced load condition.

  • PDF

Large Signal and Small Signal Models for a Pulsewidth-Modulated or Current Controlled Series Resonant Converter (전류 제어형 공진형 컨버터를 위한 대신호 및 소신호 모델)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Sang, Doo-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.309-313
    • /
    • 1990
  • Pulse width modulation using discontinuous conduction modes are applied to a full-bridge series resonant converter to regulate the output from no load to full load with low switching loss and a narrow range of frequency variation. Finally, a simple nonlinear discrete-time dynamic model for this proposed converter is derived using approximation. This discrete time model is linearized and a general input - output transfer function for the propelled converter is derived.

  • PDF

Multi-Step Commutation and Control Policies for Matrix Converters

  • Hofmann W.;Ziegler M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.795-802
    • /
    • 2001
  • The commutation and control in matrix converters is more complicated as in voltage source converters. Natural freewheeling paths do not exist and the theoretic absent storage elements result in a direct coupled system of load and line currents as well as voltages. The paper offers an overview about staggered commutation and control policies in matrix converters. Based on the knowledge about load current direction and the signs of the line to line input voltages different multi-step commutation policies were derived. This paper examines the application of that policies in the case of space vector modulation and direct control methods with the focus on the resulting effects to the reference output voltage deviation.

  • PDF

A New Voltage Control Method in CRPWM for Improving Distortion and Efficiency at Load Side (출력 파형 왜율과 효율 개선을 위한 CRPWM의 전압 제어 방법)

  • Ahn, Sung-Chan;Song, Jhong-Whan;Cho, Kyu-Bok;Won, Jhong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1104-1107
    • /
    • 1992
  • Voltage controlled current regulated PWM(pulse width modulation) of VSI (voltage source inverter) is proposed. Adopting one degree of freedom, the voltage, the current controller shows much more improvement than conventional ones not using this method. The voltage controller or this proposal needs load's parameters, torque value, rotational speed. This voltage controller is located at converter part which links AC source and DC bus. With this proposed method, duty ratio of the inverter's switching is nearly unity for all speed and torque range. Hence, this method gets many advantages such as reducing current ripple, thermal loss, and noises and improving control performances. Theoretical approach to this voltage-current controller is performed, and the results are presented.

  • PDF

Analysis, Design and Implementation of an Interleaved DC/DC Converter with Series-Connected Transformers

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.643-653
    • /
    • 2012
  • An interleaved DC/DC converter with series-connected transformers is presented to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two half-bridge converter cells connected in series to reduce the voltage stress of the switches at one-half of the input voltage. The output sides of the two converter cells with interleaved pulse-width modulation are connected in parallel to reduce the ripple current at the output capacitor and to achieve load current sharing. Therefore, the size of the output chokes and the capacitor can be reduced. The output capacitances of the MOSFETs and the resonant inductances are resonant at the transition instant to achieve ZVS turn-on. In addition, the switching losses on the power switches are reduced. Finally, experiments on a laboratory prototype (24V/40A) are provided to demonstrate the performance of the proposed converter.

Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit (온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

A Study on Synchronized AC Source Voltage Regulator of Voltage Fed Inverter using a Photovoltatic Effect

  • Hwang, Lak-Hoon;Lee, Chun-Sang;Kim, Jong-Lae;Jang, Byong-Gon
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.547-553
    • /
    • 1998
  • In this paper, we composed of utility interactive pv generation system of voltage source inverter, and represented uninterrutible power supply (UPS) equipment maintaining constant voltage, using a pulse width modulation(PWM) voltage fed inverter, as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to dc side with solar cell using a photovoltaic (PV) that it was so called constant voltage charge. In addition, better output waveform was generated because of PWM method, and it was proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

  • PDF