• Title/Summary/Keyword: Load mode

검색결과 2,361건 처리시간 0.024초

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • 제6권1호
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

상용 프레스의 하중 방향에 따른 강도에 의한 내구성 평가 (Durability Evaluation by Strength due to Load Direction of Press in Common Use)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, strength and durability are investigated using structural and vibration analyses on models 1 and 2 of a press in common use. Model 1 has a structure in which a punch is applied from the upper part to the lower part; however, model 2 a structure in which a punch is applied from the lower part to the upper part. Maximum displacements of models 1 and 2 are 0.018184 mm and 0.025498 mm, respectively. Maximum equivalent stresses of models 1 and 2 are 14.144 MPa and 18.58 MPa respectively. Maximum displacements are shown for the punches of both models; model 1 has less deformation than model 2. Model 1 has more durability than model 2, as determined by an investigation of the structural strength. Using natural frequency analysis, model 1 was found to have maximum deformation in the upper part of punch. Mode1 2 has its maximum deformation in the column part of the body and the upper part of the fixed pin. Using harmonic stress analysis, the maximum deformations were found on the punch part and column part of the body in the cases of models 1 and 2, respectively. As the maximum total deformation and equivalent stress in the case of model 2 are shown to become 40 times those values of model 1, the vibration durability of model 2 can be seen to be weaker than that of model 1.

개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어 (Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm)

  • 한상오;허건수
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.369-374
    • /
    • 2010
  • 리니어 모터는 동력전달장치가 필요 없는 직접구동 방식으로 접촉 식의 비선형 효과를 크게 줄일 수 있고 구조 또한 간단하다. 그러나 리니어 모터는 동력전달장치를 제거함으로 인해 파라미터 변화와 외란 등에 둔감한 동력전달장치의 장점을 잃게 되어 모델의 불확실성이나 외란에 민감할 뿐만 아니라 마찰과 리플의 특성에 쉽게 영향을 받는다. 본 논문은 리니어 모터의 두 축을 대상으로 위치제어에 악영향을 주는 대표적인 비선형 함수인 마찰력과 리플력을 추정하여 이를 보상하며 개선된 교차 축 연동제어기를 통해 축 간의 윤곽정밀도를 향상시켰다. 기존의 연구된 제어기들은 위치추종과 윤곽추종을 위해 개별적인 제어기를 설계하였으나 제안된 제어기는 하나의 안정한 제어기로 두 축의 위치정밀도와 윤곽정밀도를 동시에 향상시켰다. 제안된 비선형 적응제어기는 모의실험을 통하여 기존의 제안된 교차 축 연동제어기와 비교검증을 함으로써 제안된 제어시스템의 성능을 검증하였다.

소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석 (The System Reliability Analysis of Web Frame by Plastic Strength Analysis)

  • 양영순;임상전
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.251-267
    • /
    • 1991
  • 평면 골조 구조물로 이상화된 Web frame의 최종강도를 합리적으로 추정하기 위해 기존의 탄성해석 방법 대신에 구조물의 소성붕괴를 최종상태로 가정하여 구조해석을 수행하는 소성 해석 방법으로 선형 계획법과 Compact procedure를 정식화 하였고, 그 결과를 탄소성 해석과 비교하여 Web frame의 안전성 평가에 있어서 소성강도 해석 방법의 유용성을 검토하였다. 또한 구조해석에 사용되는 변수들의 확률적 특성을 고려하여 구조물의 안전성 평가를 하는 신뢰성 해석을 위해 소성붕괴 해석에서 얻어지는 구조물이 소성 파괴모드를 신뢰성 모델로서 사용 하였으나, 선체와 같이 과잉 구속되어 있는 부정정 구조물이 갖는 다수의 파괴모드 문제를 처리 하기 위해 기본 파괴모드 해석 방법과 자동 파괴모드 해석 방법을 이용하였고, 얻어진 파괴 모드로 부터 Web frame의 파괴확률을 계산하여 구조물의 안전성 평가에 있어서 확정론적인(deterministic)방법과 확률론적인(probabilistic)방법을 비교 검토하였다.

  • PDF

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

가변구조 적응제어이론에 의한 원자로부하추종 출력제어에 관한 연구 (A Study on the Variable Structure Adaptive Control Systems for a Nuclear Reactor)

  • Sung Ha Kwon;Hee Young Chun;Hyun Kook Shin
    • Nuclear Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.247-255
    • /
    • 1985
  • 본 논문은 가변구조모델추종제어(VSMFC)계 설계의 새로운 방법을 고찰한 것이다. 설계 개념은 가변구조계(VSS)와 슬라이드모드 이론을 사용하여 비선형 시변다변수계가 파라미터 변동이 있을지라도 모델추종을 정확히 하게끔 제어측이 가변구조를 갖게 하는 것이다. 본 논문의 방법을 실제 물리계에 적용할 때 컴퓨터 계산시간의 감소와 파라미터변동에 무관한 동적응답을 기대할 수 있다. 이론의 유효성을 밝히기 위해 VSMPC를 1000MWe의 불등경수형 원자로(BWE)에 적용하였다. 즉 원자로의 출력요구가 정격출력의 85∼90% 범위에서 변할 때 부하추종출력제어가 원활히 이루어지는가를 컴퓨터 시뮬레이션하였다. 12개의 비선형미분방정식으로 동특성이 주어지는 원자로에서 6차계 선형모델을 85% 정격치에서 구하고 여러범위에 걸쳐서 부하변동이 있을 때 파라미터변동을 극복하면서도 출력제어를 원활히 하는가를 연구하였다.

  • PDF

탄소섬유쉬트에 의해 휨보강된 RC보의 휨강도 추정 (An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets)

  • 박종섭;정우태;유영준;박영환
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.213-220
    • /
    • 2005
  • 탄소섬유쉬트를 이용한 철근콘크리트 교량의 보강은 재료의 높은 중량-강도비, 중량-강성비, 내부식성 및 시공의 편리성 등과 같은 여러 가지 장점으로 인하여 최근 그 사용이 급증하고 있다. 본 연구의 목적은 탄소섬유쉬트로 휨보강된 철근콘크리트보의 보강성능을 비교하고, 그 특성을 고려한 보강설계식을 제안하기 위함이다. 철근비 및 보강비에 따른 철근콘크리트보의 보강성능을 검토하기 위하여 3m 경간의 단순보에 대한 실험을 수행하였으며, 파괴모드, 최대하중 및 단면 내에서의 변형률분포에 비중을 두고 결과를 분석하였다. 실험 결과, 보강된 보는 단면 내에서의 변형률이 선형으로 분포하지 않는 것으로 나타났으며, 본 연구에서는 이러한 실험결과를 바탕으로 보강설계식을 제안하고 국내외 여러 실험결과들과의 비교를 통해 제안된 보강설계식이 타당함을 나타내었다.