• Title/Summary/Keyword: Load frequency control

Search Result 795, Processing Time 0.028 seconds

Operating Method of BESS for Providing AGC Frequency Control Service Considering Its Availability Maximization (배터리 가용성 극대화를 고려한 BESS의 AGC 주파수제어 추종운영방안)

  • Choi, Woo Yeong;Yu, Ga Ram;Kook, Kyung Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1161-1168
    • /
    • 2016
  • Battery energy storage system(BESS) attract the attention of the power system operators with its fast response to a disturbance in spite of its limited energy capacity. This paper proposes the operating method of BESS for following the Automatic Generation Control(AGC) frequency control which is centrally distributed by a system operator. As BESS needs to just meet the control requirement from the system operator, it should be able to properly manage the state of charge(SOC) of BESS to be available to control signal. For doing these, the proposed method distributes the control requirement to available batteries in proportion to its SOC. In addition, unavailable batteries are controlled to recover the SOC to an appropriate range, and the recovering power is supplied by available batteries meeting the control requirement. Moreover, the proposed method manages the efficiency of power conversion system (PCS) by limiting the number of PCS to be assigned for the low control requirement. Finally, the case studies are carried out to verify the effectiveness of proposed strategy.

Characteristics comparison of food parallel type high frequency resonant inverter by driving signal control method (구동신호 제어기법에 의한 부하병렬형 고주파 인버터의 특성비교)

  • 이봉섭;원재선;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the load parallel type full-bridge high frequency resonant inverter can be used as power source. Output control method of proposed circuit is compared with pulse frequency modulation(PFM), pulse width modulation(PWM) and pulse phase variation(Phase-Shift). The analysis of the proposed circuit is generally described by using the normalized parameters. The principle of basic operating and the its characteristics are estimated according to the parameters such as switching frequency(${\mu}$), pulse width($\theta$d) the variation of phase angle($\phi$) by three driving signal patterns. Experimental results are presented to verify the theoretical analysis result. In future, Characteristics by three driving signal control method is provided as useful data in case of output control of a power supply in various fields as induction heating application, DC-DC converter etc.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

The High-frequency Induction-heating application for 2700kW power (2700kW급 고주파 유도 가열 장치의 시작)

  • 이영호;김용환;이광수;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.171-174
    • /
    • 1998
  • The development of the high-frequency induction-heating for 2700kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system, and auto-interface etc.

  • PDF

Dynamic Characterizations of a Piezoelectric Microactuator in Hard Disk Drive (HDD용 압전형 마이크로엑츄에이터의 동특성 규명)

  • Kim, Cheol-Soon;Kim, Kyu-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • To provide model parameters for servo control system design, dynamic characteristics of a piezoelectric microactuator for hard disk drive(HDD) were investigated. At first frequency response characteristics was measured and a second order model was proposed. Here the amplitude dependent dynamic characteristics such as low frequency gain and damping ratio were studied. In addition, the load current and equivalent impedance of the piezoelectric actuator were measured by varying excitation voltage and frequency. At last, the super-harmonic resonance of the piezoelectric actuator was discussed.

  • PDF

Constant Speed Control of Shaft Generating System Driven by Hydrostatic Transmission for Ship Use (유압구동식 선박용 축발전장치의 정속제어)

  • 정용길;이일영;양주호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2023-2032
    • /
    • 1993
  • This study suggests a new type shaft generating system driven by hydrostatic transmission suitable for small size vessels. Since the shaft generating system is affected ceaselessly by disturbances such as speed variation in pump driving speed and variation in external load, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study, a digital robust servo control algorithm is applied to the controller design. By the experiment and the numerical computation, the frequency variation characteristics of the generating system under various disturbances are investigated. Conclusively, it is said that the shaft generating system proposed in this study shows excellent control performances.

Parallel Operation of Three-Phase Four wire UPS using Droop Control (Droop Control을 이용한 3상 4선식 UPS의 병렬운전)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.88-95
    • /
    • 2013
  • A new droop control method which can be applied to 3-phase 4-wire uninterruptible power supply is proposed in this paper. The droop control method for parallel operation is very attractive one as UPS parallel operation can be carried out without any data communication devices provided among UPS systems connected, but it reportedly shows a PnP(plug-and-play) problem. A basic reason why a circulating current could flow among parallel-connected UPS systems is clearly investigated as well when droop-controlled-ups systems are operated in the manner of PnP. The proposed algorithm is deduced from the investigated result and is basically structured to keep a balanced frequency and balanced voltage profile against power variation. This paper shows that balanced parallel operation of droop control method can be obtained under unbalanced load as well as balanced load conditions when PnP operation is needed and load change occurs.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

A Study on Parallel Operation Between Inverter System and Utility Line (인버터 시스템과 상용 전력 계통과의 병렬 운전에 관한 연구)

  • 천희영;박귀태;유지윤;안호균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.369-378
    • /
    • 1992
  • This paper proposes a utility parallel processing inverter system, which consists of a voltage source PWM inverter, isolation transformer and a reactor linking the inverter to utility line. This system realizes following functions : (1) voltage phase frequency and amplitude synchronization between inverter and utility line at stand-alone mode. (2) current phase synchronization between inverter and load at parallel mode. Therefore, despite sudden increase in load current over setting point at stand-alone mode, inverter system can be transferred into parallel mode immediately without transient current. Furthermore, high frequency(18KHz) PWM control and sinusoidal filtering improve the inverter output waveform by eliminating high order harmonic components as well as low order. As a switching device, IGBT is used for high frequency switching and large current capacity.

  • PDF

Drive Signal Phasor Control-Based High Frequency Resonant Inverter Using Power-SIT (구동 신호 Phasor 제어형 SIT 고주파 공진 인버터)

  • 김동희;노채균;김종해;정원영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • This paper proposed a novel SIT high frequency resonant inverter having drive signal phase shift control function. Phasor control type inverters using SIT can realize a power conversion on the high switching frequency with low switching loss. Especially, the high output power can be abstained by connecting the output voltage of two unit inverters In serIes. The stability of system using protection circuit for over current and the automatic follow-up control with load variation by PLL is presented. This inverter produce approximately sinusoidal waveform at a high frequency, switching frequency ranging from 180[kHz] to 220[kHz], and is applied to the 2[kW] induction heating. The operating characteristics of this inverter circuit are discussed from a theoretical point of view and compared with experimental results. results.

  • PDF