• Title/Summary/Keyword: Load factor

Search Result 3,067, Processing Time 0.032 seconds

Stacking Durability Analysis of Fruit , Packaging Boxes by Creep (크리이프에 의한 과실 포장입자의 층적 내구성 분석)

  • 박종민;권순홍;권순구;김만수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.191-197
    • /
    • 1996
  • Allowable stacking duration of the corrugated fiberboard boxes being widely used for packaging fruits and vegetables was analyzed by the creep behavior and the cumulative load correction factor for the boxes. The stacking boxes were assumed to be stored at a nearly constant temperature and relative humidity condition. When the stacking duration was short period, the stacking height determined by two methods showed a little difference between them, but almost no difference was shown as the stacking duration was longer. Allowable stacking duration was rapidly decreased with the increase of static load applied on the stacking boxes, and allowable stacking duration of Box A was estimated the longer than that of Box B. A model of allowable stacking duration for the corrugated fiberboard box was developed as a function of the stacking load and the ambient relative humidity.

  • PDF

Development of Bus Load Forecasting System based on Windows95 : Part I (윈도우즈95에 기초한 모선수요예측시스템의 개발(I))

  • Jeon, Dong-Hoon;Song, Seok-Ha;Lim, Joo-Il;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.169-171
    • /
    • 1996
  • In this paper, we have developed bus load forecasting system (BUSLOF) based on Windows 95. It has been developed for the secure operation of electric power system. It forecasts regional load and bus load using regional distribution factor(RDF) and bus distribution factor (BDF) which are calculated from bus load in the past. It is equipped with graphic user interface(GUI) which enables a user to easily access to the system. The performance of the developed system is estimated in sample data.

  • PDF

Comparison of VUF using Resistor & Inductive Load (저항성 및 유도성 부하의 운전시 전압불평형율의 비교)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Jong-Han;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1062-1064
    • /
    • 2005
  • 3 phase 4-wire system has been widely used in the customer's application due to merit of 1 bank construction of loads such as 1-phase lighting, heat and 3-phase motor. But if the load distribution is not uniformed by the operation conditions, voltage unbalance is highly appeared by the difference of each phase current value. Especially, if the linear load such as resistance or inductive load has different power factor value, voltage unbalance factor is not the same due to the phase angle and magnitude of each phase voltage. In this paper, we composed the measurement device and analyzed by varying of load pattern.

  • PDF

A Scheme of Channel Diversity Load Balancing Consideration for Path Selection in WMNs

  • Gao, Hui;Kwag, Young-wan;Lee, Hyung-ok;Nam, Ji-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.249-251
    • /
    • 2014
  • This paper proposes a channel diversity based load-balancing cross-layer routing scheme for Wireless Mesh Networks (WMNs). The proposed scheme deals with channel diversity phase and load balancing phase in WMNs. Channel diversity factor $metric_{ch-d}$ and load balancing factor $f_{load}$ are defined and employed cooperatively as a combined path selection policy.

A New Method for Evaluating Load Carrying Capacity with respect to Traffic loads (통행차량에 의한 내하력 평가기법 연구)

  • Koo, Bong-Kuen;Han, Sang-Hoon;Shin, Jae-In;Lee, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the load carrying capacity of bridges. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. This paper presents the development of a method for determining the response the modification factor, using traffic loads. The proposed method is based on the results of computer simulations of traffic action effects. The simulation program generates random traffic actions for defined traffic conditions and determines the frequency distribution of maximum traffic action effects. A comparison between the proposed method and the present method shows good agreement in estimating the modified load carrying capacity of bridges.

  • PDF

Traffic Induced Dynamic Load Factors on Continuous Steel Girder Bridges Based on Field Testing (강거더 연속교에 대한 충격계수에 관한 실험적 연구)

  • Eom, Jun-Sik;Choi, Jong-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.70-76
    • /
    • 2013
  • The objective of the paper is to present the results of analytical and experimental studies dealing with dynamic load for continuous steel girder bridges due to normal truck traffic. Various bridge design codes specify dynamic load factor (defined as a fraction of static portion of live load) for short span structures at the level of about 0.3. However, there are not definite values specified for continuous brigdes. Therefore, it is an usual practice to use the code specified dynamic load factors for simple span bridges to continuous bridges without clear background. The field measurement results indicate that the actual dynamic load factors are less than 0.2 for a single truck, and less than 0.05 for two trucks side-by-side, regardless of positive and negative moment region.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Relations of Safety Factor and Reliability for Pile Load Capacity (말뚝 기초지지력에 대한 안전율과 신뢰도지수 평가)

  • Kim, Dae-Ho;Kim, Min-Ki;Hwang, Sung-Uk;Park, Young-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.65-73
    • /
    • 2006
  • Reliability between safety factor and reliability index for driven and bored pile load capacity was analyzed in this study. 0.1B, Chin, De Beer, and Davisson's methods were used for determining pile load capacity by using load-settlement curve from pile load test. Each method defines ultimate yield and allowable pile load capacities. LCPC method using CPT results was performed for comparing results of pile load test. Based on FOSM analysis using load factors, it is obtained that reliability indices for ultimate pile load capacity were higher than those of yield and allowable condition. Present safety factor 2 for yield and allowable load capacities is not enough to satisfy target reliability index $2.0{\sim}2.5$. However, it is sufficient for ultimate pile load capacity using safety factor 3.

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

A Study on the Variation of Power Factor by Connection of the Induction Generator to the Distribution Line (배전선로에 유도발전기 연결시 역률 변동에 관한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.159-163
    • /
    • 2015
  • Recently squirrel cage induction generator has been steadily applied to many small hydro power plants. Induction generator needs a reactive power for magnetization. The reactive power of induction generator is being supplied from the supply side mostly. The use of induction generators in the power distribution grid can affect the power factor. The power factor of induction generator is fixed already during production. The power factor in the distribution system is due to the increase or decrease of the load rather than due to the induction generator. In this study, we analyzed that how the increase or decrease of D/L load impacts at the change of power factor and power flow.