DOI QR코드

DOI QR Code

Relations of Safety Factor and Reliability for Pile Load Capacity

말뚝 기초지지력에 대한 안전율과 신뢰도지수 평가

  • 김대호 (대우엔지니어링 도로사업부) ;
  • 김민기 (연세대학교 토목공학과) ;
  • 황성욱 (연세대학교 사회환경시스템공학부) ;
  • 박영환 (연세대학교 토목공학과) ;
  • 이준환 (연세대학교 사회환경시스템공학부)
  • Published : 2006.11.30

Abstract

Reliability between safety factor and reliability index for driven and bored pile load capacity was analyzed in this study. 0.1B, Chin, De Beer, and Davisson's methods were used for determining pile load capacity by using load-settlement curve from pile load test. Each method defines ultimate yield and allowable pile load capacities. LCPC method using CPT results was performed for comparing results of pile load test. Based on FOSM analysis using load factors, it is obtained that reliability indices for ultimate pile load capacity were higher than those of yield and allowable condition. Present safety factor 2 for yield and allowable load capacities is not enough to satisfy target reliability index $2.0{\sim}2.5$. However, it is sufficient for ultimate pile load capacity using safety factor 3.

최근 신뢰성 이론에 바탕을 둔 한계상태설계법(Limit State Design)이 국제적으로 도입되고있는 추세이다. 이에 본 연구에서는 사질토 지반에 근입된 항타 및 현장타설 말뚝의 지지력 산정법에 대한 신뢰도지수와 안전율과의 관계를 규명하고자 하였다. 본 연구는 말뚝 직경의 10% 침하 시 지지력을 결정하는 방법(0.1B), Chin의 방법, De Beer의 방법과 Davisson의 방법에 대한 말뚝 지지력 산정결과를 비교 분석하였고, 말뚝의 지지력 산정 시 유용하게 활용되는 CPT결과를 통한 말뚝의 지지력 산정법 중에서 LCPC법에 의한 지지력과의 비교를 통해 FOSM법을 바탕으로 각 산정 법에 대한 신뢰도를 평가하였다 각 말뚝지지력 해석 방법에 따른 안전율과 신뢰도지수 관계 분석결과, 극한지지력을 규정하는 0.1B와 Chin의 방법에 대한 신뢰도지수가 De Beer와 Davisson에 의한 신뢰도지수보다 높은 것으로 나타났으며, 목표신뢰도지수 $2.0{\sim}2.5$를 기준으로 하여 항타 말뚝에서의 안전율 2는 방법에 따라 다소 증대될 필요가 있고, 현장 타설 말뚝에서는 극한 지지력 확인시 안전율 3보다 작게 적용할 수 있는 여지가 있음을 확인하였다.

Keywords

References

  1. 한국지반공학회(2003), 구조물 기초설계기준 해설, 건설교통부제정
  2. AASHTO (1994), LRFD Bridge and Construction Specifications, AASHTO, Washington, D.C
  3. Altaee, A., Fellenius, B. H., and Evgin, E. (1992), 'Axial Load Transfer for Piles in Sand. I. Tests on an Instrumented Precast Pile', Canadian Geotechnical Journal, Vol.29, No.1, pp.11-20 https://doi.org/10.1139/t92-002
  4. Briaud, J. L., Tucker, L. M., and NG, E. (1989a), 'Axially Loaded 5 Pile Group and Single Pile in Sand', Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Rio de Janeiro, pp.1121-1124
  5. Briaud, J. L., Moore, B. H., and Mitchell, G, B. (1989b), 'Analysis of Pile Loading Tests at Lock and Dam 26', In ASCE Proceedings of the Foundation Engineeroing Congress: Current Principlesm and Practice, Evanston, I11. June 25-29, 1989, F. H. Kulhawy, ASCE, Geotechnical Special Publication 22, Vol.2, pp.925-942
  6. Bustamante, M. and Gianeselli, L. (1982), 'Pile Bearing Capacity Prediction by Means of Static Penetrometer CPT', Proc. of 2nd European Symposium on Penetration Testing, Amsterdam, pp.493-500
  7. Chin, F. K. (1970), 'Estimation of the ultimate load of piles not carried to failure', Proceedings 2nd Southest Asian Conference on Soil Engineering, pp.81-90
  8. Davisson, M. T. (1972), 'High Capacity Piles', Proceedings, Lecture Series, Innovation in Foundation Construction, ASCE, Illinois Section, pp.52
  9. De Beer, E. (1967), 'Proefondervindelijke Bijdrage tot de Studie van zand onder funderingern op stall', Tijdshrift der Openbar Werken van het grensdraag vermogen van Beigie Nos 6-67 and 1-, 4-, 5-, 6-68
  10. Kausoftas, D. C. (2002), 'High Capacity Piles in Very Dense Sands', Proceedings of the International Deep Foundations Congress, O'Neill, M. W, and Townsend, F. C, Orlando, February 14-16, Vol.1, pp.632-646
  11. Kruizinga, J. (1975), 'Analysis of Test Results of Bored Piles in the Netherlands', LGM-Mededelingen XVII, No.2
  12. Kruizinga, J., and Nelissen, H. A. M (1985), 'Behavior of Board and Auger Piles in Normally Consolidated Soils', Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, San Francisco, August 12-16, Vol.3, pp. 1417-1420
  13. Lee. J. H., R. Salgado, and Paik. K. H. (2003), 'Estimation of Load Capacity of Pipe Piles in Sand Based on Cone Penetration Test Results', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.6, pp.391-403 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(391)
  14. Mandolini, A., Romandini, M., Russo, G., and Viggiani, C. (2002), 'Full Scale Loading Tests on Instrumented CFA Piles', Proceedings of the International Deep Foundations Congress, O'Neill, M. W, and Townsend, F. C, Orlando, February 14-16, Vol.2, pp.1088-1097
  15. Matsui, T. (1993), 'Case Studies on Cast-In-Place Bored Piles and Some Considerations for Design', Proceedings of Deep Foundations on Bored and Auger Piles, Van Impe, Ghent, Belgium, June 1-4, pp.77-101
  16. Mayne, P. W. and Harris, D. E. (1993), Axially Load-Displacement Behavior or Drilled Shaft Foundations in Piedmont Residuum, Technical Report, No. 41-30-2175, FHWA
  17. Scott, B. (2002), Development of Load and Resistance Factor Design Method for Shallow Foundations, Ph D thesis, Purdue University, West Lafayette, Indiana
  18. Van Impe, W., DeBeer, E. E., and Louisberg, E. (1988) 'Prediction of Single Pile Bearing Capacity in Granular Soils from CPT Results', Procedings of the 1st International Symposium on Penetration Testing, ISOPT-1, Specialty Session, Orlando, Fla, March20-24, 1988. pp.1-34
  19. Vesic, A. S. (1970), 'Tests on Instrumented Piles, Ogeechee River Site', Journal of Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM2, pp.561-584
  20. Withiam, J. L., Voytko, E. P., Barker, R. M., Duncan, J. M., Kelly, B. C., Musser, S. C., and Elias, V. (2001), Load and Resistance Factor Design (LRFD) for Highway Bridge Substructures, Publication No FHWA HI-98-032, NHI Course No.13068, Fedral Highway Administration, Washington D.C
  21. Witzel. M., and Kempfert. H. J. (2005), 'A Simple Approach to Predict the Load Settlement Behavior of Precast Driven Piles with due Consideration of the Driving Process', ASCE, Geotechnical Special Publication, No.17, May, pp.134-l56