• 제목/요약/키워드: Load evaluation

검색결과 3,651건 처리시간 0.032초

풍력발전기의 하중 측정을 위한 해석 소프트웨어의 개발 (Development of an Analysis Software for the Load Measurement of Wind Turbines)

  • 길계환;방제성;정진화
    • 풍력에너지저널
    • /
    • 제4권1호
    • /
    • pp.20-29
    • /
    • 2013
  • Load measurement, which is performed based on IEC 61400-13, consists of three stages: the stage of collecting huge amounts of load measurement data through a measurement campaign lasting for several months; the stage of processing the measured data, including data validation and classification; and the stage of analyzing the processed data through time series analysis, load statistics analysis, frequency analysis, load spectrum analysis, and equivalent load analysis. In this research, we pursued the development of an analysis software in MATLAB to save labor and to secure exact and consistent performance evaluation data in processing and analyzing load measurement data. The completed analysis software also includes the functions of processing and analyzing power performance measurement data in accordance with IEC 61400-12. The analysis software was effectively applied to process and analyse the load measurement data from a demonstration research for a 750 kW direct-drive wind turbine generator system (KBP-750D), performed at the Daegwanryeong Wind Turbine Demonstration Complex. This paper describes the details of the analysis software and its processing and analysis stages for load measurement data and presents the analysis results.

강거더 교량의 신뢰성해석을 위한 저항모델 개발 (Resistance Model for Reliability Analysis of Existing Steel Girder Bridges)

  • 엄준식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권4호
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • 제1권1호
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

간략화 모의 기법을 이용한 대전력 계통 신뢰도 계산 (The Evaluation of Reliability in a Composite Power System using Simplified Simulation Techniques)

  • 김동희;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.221-223
    • /
    • 1997
  • This paper presents the Simplified Simulation Technique that evaluates the adequacy of an electric power system using only a portion of the outage period instead of each hour. Reliability evaluation may be performed at various hierarchical levels, generation, transmission and distribution system. The Simplified Simulation Technique simplifies the adequacy evaluation process reducing the number of calculations considerably. Therefore the computation time can be significantly reduced. This paper is done to compare the results of the simulation model with the Simplified Simulation Technique against the results of the simulation model without the Simplified Simulation Technique. The reliability indices such as the Loss of Load Probability(LOLP), the loss of load frequency(LOLF), the average duration of load curtailment(DLC) and the average demand of load curtailment(ADLC) are calculated. The proposed methods and procedures are tested by using the IEEE-RTS with 24-bus system.

  • PDF

Economic Evaluation of ESS in Urban Railway Substation for Peak Load Shaving Based on Net Present Value

  • Park, Jong-young;Heo, Jae-Haeng;Shin, Seungkwon;Kim, Hyungchul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.981-987
    • /
    • 2017
  • In this paper, we estimate the economic benefits of Energy Storage Systems (ESSs) for peak load shaving in an urban railway substation using the annual cost. The annual investment cost of ESSs is estimated using Net Present Value (NPV) and compared with the cost reduction of electricity by the ESS. The optimal capacities of the battery and Power Converting System (PCS) are determined for peak load shaving. The optimal capacity of the ESS and the peak load shaving is determined to maximize the profit by the ESS. The proposed method was applied to real load data in an urban railway substation, and the results show that electric power costs can be reduced. Other aspects of the ESS, such as the lifetime and unit price of the battery, are also investigated economically.

냉연코일강판 수송용 화차의 안전성 평가를 위한 차체하중시험과 진동시험 (A safety evaluation on the loading and vibration test for transport freight car of cold rolled coil sheet)

  • 김원경;정종덕;윤성철;홍용기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1499-1502
    • /
    • 2003
  • This paper describes the result of carbody and vibration test for freight car. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to load a freight car under maximum load and operating condition on line track. The test carbody is constructed by RS korea co., LTD. in accordance with KNR specfication. The test cases of the carbody is tested the vertical load and compressive load to verify the strength and stillness. The vibration test is tested for analysis and evaluation of vibration, to allow for the fact that mechanical vibration in railway vehicles have specific characteristics.

  • PDF

알루미늄 차체 하중 시험 방법에 관한 비교 평가 (Comparison and Evaluation of Load test Methods for Aluminum Car Body)

  • 서승일;박춘수;신병천
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.187-191
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.

  • PDF

면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가 (Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel)

  • 구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

증기제트 충돌하중 평가를 위한 CFD 해석 (CFD Analysis for Steam Jet Impingement Evaluation)

  • 최청열;오세홍;최대경;김원태;장윤석;김승현
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.58-65
    • /
    • 2016
  • Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.

상태평가와 내하성능평가를 통한 소규모 노후교량의 유지관리 적정성 분석 (Analysis of Appropriateness for Maintenance of Aged Small Bridges based on Condition and Load Carrying Capacity Evaluation)

  • 이후석;노화성;선종완;박경훈
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.59-66
    • /
    • 2019
  • 현재 시설물 안전 및 유지관리에 관한 특별법에 의하면 소규모 교량은 육안점검 위주의 정기점검만 실시하고 있다. 특히 공용년수 30년 이상의 교량은 노후화에 따라 개축여부에 관한 의사결정이 필요하지만 외관상태만으로 결정해야 하는 상황이 발생하여 안전적인 유지관리의 측면에서 미흡한 부분이 있다. 본 논문에서는 기존의 교량 점검시 사각지대에 있는 일반국도의 공용년수 30년 이상의 소규모 노후교량 12개소에 대해서 육안점검을 통한 상태평가와 차량재하실험을 통한 내하성능평가를 수행하였다. 정기적인 내하성능평가를 수행하지 못하는 소규모 교량들에 대해서 육안점검을 통해 결정된 상태등급과 교량의 내하성능평가 결과를 비교하여 개축 여부 의사결정과 관련된 유지관리의 적정성을 검토하였다. 검토결과 대상 교량 중 2개소가 상태평가 결과 안전에 이상이 없는 것으로 나타났으나 내하력이 부족한 것으로 나타났다. 이것은 육안점검만으로 소규모 노후교량에 대해 안전성을 판단하고 개축에 관한 의사결정을 수행하는 것은 유지관리에 미흡한 부분이 발생할 수 있다는 나타낸다. 따라서 소규모 노후교량의 유지관리를 위해서는 상시 계측 및 내하성능평가에 대한 추가적인 연구와 교량관리시스템의 이용을 통해 가 필요한 것으로 판단된다.