• Title/Summary/Keyword: Load distribution ratio

Search Result 398, Processing Time 0.022 seconds

Server State-Based Weighted Load Balancing Techniques in SDN Environments (SDN 환경에서 서버 상태 기반 가중치 부하분산 기법)

  • Kyoung-Han, Lee;Tea-Wook, Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1039-1046
    • /
    • 2022
  • After the COVID-19 pandemic, the spread of the untact culture and the Fourth Industrial Revolution, which generates various types of data, generated so much data that it was not compared to before. This led to higher data throughput, revealing little by little the limitations of the existing network system centered on vendors and hardware. Recently, SDN technology centered on users and software that can overcome these limitations is attracting attention. In addition, SDN-based load balancing techniques are expected to increase efficiency in the load balancing area of the server cluster in the data center, which generates and processes vast and diverse data. Unlike existing SDN load distribution studies, this paper proposes a load distribution technique in which a controller checks the state of a server according to the occurrence of an event rather than periodic confirmation through a monitoring technique and allocates a user's request by weighting it according to a load ratio. As a result of the desired experiment, the proposed technique showed a better equal load balancing effect than the comparison technique, so it is expected to be more effective in a server cluster in a large and packet-flowing data center.

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Barzoki, Ali Akbar Mosallaie;Loghman, Abbas;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.497-517
    • /
    • 2015
  • In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

the height-wise distribution of lateral seismic forces considering the contribution of the higher modes (고차모드 효과를 고려한 층 지진하중 분배)

  • 황준호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.273-280
    • /
    • 1999
  • The base shear and the veritcal distribution of shears along the height of a building are two fundamental measures that define the design seismic load. But the method specified in Korean building code does not give an appropriate distribution for buildings of tall or longer period because it roughly account for the contributions of the higher modes. several methods to give a better distribution of seismic forces have been proposed. But they have not been introduced into the seismic codes yet probably because they cannot solve all the above-mentioned problems. This paper deals with the distribution of lateral seismic forces along the height of a building to account for the contribution of the higher modes. After reviewing some existing distributions in seismic codes and literatures moment-resisting frames with various stories were studied by modal analysis for a wide range of fundamental period and the stiffness ratio of the buiding. As a result of the analysis a new expression for the distribution of seismic forces is proposed and compared with those of some codes and dynamic analysis.

  • PDF

Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading

  • Chavan, Shivaji G.;Lal, Achchhe
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.229-246
    • /
    • 2017
  • The dynamic bending response of single walled carbon nanotube reinforced composite (SWCNTRC) plates subjected to hygro-thermo-mechanical loading are investigated in this paper. The mechanical load is considered as wind pressure for dynamic bending responses of SWCNTRC plate. The dynamic version of the High Order shear deformation Theory (HSDT) for a composite plate with Matrix and SWCNTRC plate is first formulated. Distribution of fibers through the thickness of the SWCNTRC plate could be uniform or functionally graded (FG). The dynamic displacement response is predicted by using Nemarck integration method. The effective material properties of SWCNTRC are estimated by using micromechanics based modeling approach. The effect of different environmental condition, volume fraction of SWCNT, Width-to-thickness ratio, wind pressure, different SWCNTRC-FG plates, boundary condition, E1/E2 ratio, different temperature on dynamic displacement response is investigated. The dynamic displacement response is compared with the available literature and it shows good agreement.

Planning for Reasonable Construction and Expanding of Distribution Substation By Load Forecasting (부하예측에 의한 합리적인 배전용 변전소 증설계획 수립)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.92-94
    • /
    • 2000
  • This paper presents algorithm to plan construction and expanding of substation considering contingency accidents by proposing utilization factor according to configuration of substation bank system. In this paper, above all, proper sphere of supply area by each district which could be standardized with respect to its supply capacity is established under assumption of long term load forecasting which was made by district respectively, and then goal of utilization ratio based on configuration of substation bank was set to keep reliability by remaining sound bank when it happen to one bank accidents. Finally it is set up for optimal construction and expanding of substation considering economy and reliability simultaneously about substation to exceed these ratio.

  • PDF

Study on the Fire Behaviour of Composite Beam (H형강 합성보의 화재거동에 관한 실험적 연구)

  • Kim, Sung-Bae;Choi, Seung-Kwan;Han, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.84-90
    • /
    • 2008
  • This paper aims to experimentally investigate the in-fire performance of composite beams with respect to the effects of load ratio and shear interaction. Under a Standard ISO834 fire, the development of temperature and deflection of simply supported composite beams were recorded. In particular, the transition of temperature distribution across the cross-section. The fire resistance of composite beam was interpreted regarding the level of shear interaction.

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

Height-thickness ratio on axial behavior of composite wall with truss connector

  • Qin, Ying;Shu, Gan-Ping;Zhou, Xiong-Liang;Han, Jian-Hong;He, Yun-Fei
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.315-325
    • /
    • 2019
  • Double skin composite walls offer structural and economic merits over conventional reinforced concrete counterparts in terms of higher capacity, greater stiffness, and better ductility. This paper investigated the axial behavior of double skin composite walls with steel truss connectors. Full-scaled tests were conducted on three specimens with different height-to-thickness ratios. Test results were evaluated in terms of failure mode, load-axial displacement response, buckling loading, axial stiffness, ductility, strength index, load-lateral deflection, and strain distribution. The test data were compared with AISC 360 and Eurocode 4 and it was found that both codes provided conservative predictions on the safe side.

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer (전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터)

  • Yoo, Dae-Hyun;Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.