• Title/Summary/Keyword: Load density

Search Result 1,071, Processing Time 0.028 seconds

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

Soil Properties of Bedding Bone for Concrete Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 지지층의 토질특성)

  • 배종순;성영두
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-62
    • /
    • 1996
  • The bedding zone which influence directly to the safety of dam is supporting the face slab under hydraulic load in concrete faced rockfill dam. In case that leakage is developed due to various ruptured joint or cracks of face slab and etc., the bedding zone should limit the leakage by low permeability and keep the internal stability. In this study for the proper coefficient of permeability various properties, such as gradation, dry density, performance of embankment work and etc. were analysed. The results from the large scale test of permeability and density are summerized as follows : 1. Coefficient of permeability is decreased clearly by increase of dry density. 2. The particles smaller than the No.4 strive( p,) greatly influences the permeability under dry density of 2.24t 1 m3. 3. In case of C.40 and p,40%, even if dry density decreased to 2.0t/m3, the permeability coefficient is assumed to u x1-scm/s and internal stability is abtained. 4. Generally in dam construction since dry density and uniformity coefficient of bedding zone were higher than 2.2t/m3 and 50 respectively p, of 30~40% is assumed to be suitable and permeability coefficient of below 1$\times$10-3cm l s is expectable.

  • PDF

Studies on the Acoustical Characteristics of Violin Bridges and SDM Simulation (바이올린 브릿지의 음향적 특성 및 SDM 시뮬레이션에 관한 연구)

  • 정우양
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • Violin bridge blank cut from maple wood with good quality has typical pattern of the radial direction in the side edge with minimal dispersion. This experimental study was designed and carried out to examine the effect of the physical and macroscopical characteristics on the compressive creep of violin bridge blank which had been imported from European manufacturer. This research arose from the idea that the maple solid wood with heterogeneous wood density and ray direction in the side edge would have uneven rheological property of violin bridge blank which is supposed to be pressed by the tension of strings. Experimentally, the compressive creep of bridge blank became smaller with the higher density of imported maple wood and showed clear density-dependence for the duration of load under the string tension of 5 kgf. Every bridge blank showed the behavior of primary creep stage(stress stabilization) having logarithmic regression creep curve with high correlation coefficient under the designed stress level. Even though the relationship between compressive creep and ray direction on the side edge of bridge was not so clear contrary to expectation, we could conclude that wood density and ray direction should be the quality decisive factors affecting the acoustical characteristics and performance of the bridge, the core member of violin-family bow instruments.

  • PDF

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.152-165
    • /
    • 2016
  • Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

Numerical Simulation on the Greenwater Impact Load of Offshore Structure in Regular Waves (규칙파 중 해양구조물의 갑판침입수 충격하중에 관한 수치시뮬레이션)

  • Kang, Ui-Ha;Lee, Young-Gill;Yang, In-Jun;Kim, Ki-Yong;Joo, Young-Seok;Park, Jeong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.492-500
    • /
    • 2017
  • In the study, numerical simulation on the greenwater impact load of free surface offshore structure in the regular waves using fixed cartesian grid system and Modified Marker-Density (MMD) method were carried out and the results were reviewed. In order to compare numerical simulation and experimental results, the FPSO with the scale ratio of 1/100 model ship with fixed rectangular deck was selected and turbulence characteristic of the flow was considered by applying the Sub-Grid Scale (SGS) in laminar flow. As a result, it is reviewed how the greenwater impact load inflowed from bow in regular headsea wave influence the flow on the deck and the flow characteristic by numerical simulation and the experiment results were compared and reviewed. Based on this study, it would be useful to numerically study the effect of greenwater on offshore structure.

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.

Improvement of Properties of Silica-Filled SBR Compounds Using NBR: Influence of Separate Load of SBR and NBR (NBR를 이용한 실리카로 보강된 SBR 배합물의 특성 향상 : SBR과 NBR의 분리 첨가 배합의 영향)

  • Choi, Sung-Seen;Kim, Beom-Tae
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Mixing condition and procedure affect properties or a filled rubber compound such as filler dispersion, viscosity, and bound rubber formation. Influence of separate load of styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) on properties or silica-filled SBR compounds containing NBR was studied. Cure time and cure rate became faster as NBR content increased. The crosslink density increased with increase in the NBR content. The bound rubber content also increased as the NBR content increased. NBR content of the bound rubber was higher than that of the compounded rubber. The bound rubber content was higher when SBR and NBR were loaded separately than when loading simultaneously. The cure time and cure rate were slower for the separate load than for the simultaneous one. The crosslink density was also lower for the former case than for the latter one.

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.