• 제목/요약/키워드: Load compensator

Search Result 246, Processing Time 0.024 seconds

Development of Three-Phase Line-Interactive Dynamic Voltage Restorer with Hybrid Detection Method (Hybrid 검출방식을 적용한 삼상 선로 응동형 DVR(Dynamic Voltage Restorer) 개발)

  • Jeong, Jong-Kyou;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1954-1961
    • /
    • 2009
  • This paper describes the development of a three-phase line-interactive dynamic voltage restorer with hybrid detection method, which is composed of three H-bridge inverter modules and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with a 3kVA prototype. The developed system can compensate the input voltage sag and interruption within 2ms. The maximum allowable duration of voltage interruption is about 4 seconds. The developed system can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication devices, and automation devices, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components, and to be highly reliable in operation.

Selective Harmonic Elimination of Three-Phase Sag Compensator for Nonlinear Load (비선형 부하에 적용 가능한 3상 새그 보상기의 선택적 고조파 보상기법)

  • Jo, HyunSik;Park, Hee-Sung;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.262-263
    • /
    • 2012
  • 3상 새그 보상기는 계통 새그나 사고 발생 시 빠르게 이상상태를 검출하여 계통을 분리하고 수퍼커패시터에 충전된 에너지를 부하에 안정하고 연속적인 정격 전압을 공급하는 장치이다. 그러나 비선형 부하일 때, 3상 새그 보상기의 출력전압에 저차 고조파가 포함된 왜곡이 발생한다. 본 논문에서는 비선형 부하에서도 안정적인 정현파 전압을 공급하기 위해 선택적 고조파 제거 방식을 도입한 전압제어기를 제안 하였다. 새그 보상기 시작품을 제작하였으며, 제안한 선택적 고조파 제거 전압제어기의 타당성을 실험을 통하여 THD가 12.7%에서 4.3%로 개선되는 것을 확인하였다.

  • PDF

A Study on Static Var Compensator Using Multi Voltage Source Inverter (다중화 전압원 인버어터를 이용한 무효전력 보상장치(SVC)에 관한 연구)

  • Mo, Chang-Oh;Kim, Hong-Gyu;Khang, Seog-Gu;Kim, Young-Min;Park, Hyun-Chul;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.403-406
    • /
    • 1995
  • In general, the reactive power is controlled by amplitude of the output voltage. This paper propose that the multiple voltage source inverter have controllable power factor made by load vary at receive-stage as lagging and leakage control.

  • PDF

Static Stability Analysis Using Voltage Source Converter HVDC (전압형 컨버터 HVDC를 이용한 정적 안정도 해석)

  • Chae, Byung-Ha;Oh, Sae-Shung;Jang, Gil-Soo;Lee, Byung-Jun;Han, Byung-Mun;Cha, Jun-Min;Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.66-68
    • /
    • 2004
  • The current source HVDC using thyristor valves requires the reactive power compensator, the increasement of short circuit ratio(SCR) by AC source, and the harmonic filter in power transmission. The voltage source HVDC that controls active power and reactive power independently can minimize the requirements and also can be used as a reactive power source without additional reactive power compensators. In this paper, the solution of supplying active power using direct current transmission and compensating additional reactive power at the heavy load zone in metropolitan area is proposed and verified by simulations.

  • PDF

Study for the selection of the optimal placement for STATCOM, using IPLAN (IPLAN을 이용한 STATCOM의 최적위치선정에 관한 연구)

  • Kim Won Kyu;Gu Min Yan;Baek Young Sik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.171-173
    • /
    • 2004
  • This paper presents the selection of optimal placement for STATCOM (Static synchronous Compensator) which is one of the FACTS (Flexible Alternating Current Transmission System) devices, considering line contingency. Line contingency ranking is gotten by using sensitivity of load margin. According to line contingency ranking line contingency was considered. And IOP (Index for selecting optimal Placement of STATCOM) is calculated by the variation of each bus's reactive mum for several line contingencies. The bus where has the biggest value of lOP is the most optimal placement to install STATCOM for voltage stability. IPLAN is used to program this part which get IOP. This study is carried out on the modified IEEE14 Bus Test System to confirm the efficiency of the method.

  • PDF

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

MOBA based design of FOPID-SSSC for load frequency control of interconnected multi-area power systems

  • Falehi, Ali Darvish
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.81-94
    • /
    • 2018
  • Automatic Generation Control (AGC) has functionally controlled the interchange power flow in order to suppress the dynamic oscillations of frequency and tie-line power deviations as a perturbation occurs in the interconnected multi-area power system. Furthermore, Flexible AC Transmission Systems (FACTS) can effectively assist AGC to more enhance the dynamic stability of power system. So, Static Synchronous Series Compensator (SSSC), one of the well-known FACTS devices, is here applied to accurately control and regulate the load frequency of multi-area multi-source interconnected power system. The research and efforts made in this regard have caused to introduce the Fractional Order Proportional Integral Derivative (FOPID) based SSSC, to alleviate both the most significant issues in multi-area interconnected power systems i.e., frequency and tie-line power deviations. Due to multi-objective nature of aforementioned problem, suppression of the frequency and tie-line power deviations is formularized in the form of a multi-object problem. Considering the high performance of Multi Objective Bees Algorithm (MOBA) in solution of the non-linear objectives, it has been utilized to appropriately unravel the optimization problem. To verify and validate the dynamic performance of self-defined FOPID-SSSC, it has been thoroughly evaluated in three different multi-area interconnected power systems. Meanwhile, the dynamic performance of FOPID-SSSC has been accurately compared with a conventional controller based SSSC while the power systems are affected by different Step Load Perturbations (SLPs). Eventually, the simulation results of all three power systems have transparently demonstrated the dynamic performance of FOPID-SSSC to significantly suppress the frequency and tie-line power deviations as compared to conventional controller based SSSC.

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

Compensation of Instantaneous Voltage Drop at AC Railroad System with Single-Phase Distributed STATCOM (전기철도 급전시스템의 순시전압강하 보상을 위한 단상 배전 STATCOM의 적용)

  • Kim, Jun-Sang;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hyun-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion my also occur to AC electrical railroad system. These problems affect not only power system stability, but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, andthen, it is analyzed voltage drop for AC electrical railroad system both with single-phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

Compensate Voltage Drop for Autotransformer-Fed AC Electric Railroad System with Single-Phase STATCOM (STATCOM을 이용한 교류 전기철도 급전시스템의 전압강하 보상)

  • 정현수;이승혁;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode, and single-phase STATCOM(Static Synchronous Compensator) which has an effect on electric railroad system. An AC electric railroad is rapidly changing single-phase feeding electric power. To avoid voltage fluctuation under single phase loads, electric power should be received from a large source. The system modeling theory is based on the solution of algebraic. The AC electric railroad load model is nonlinear. Therefore this paper is considered nonlinear load using PSCAD/EMTDC. And the proposed modeling method is considered the line self-impedances and mutual-impedances that techniques for the AC electric railroad system modeling analysis, and that single-phase STATCOM can reliably compensate the voltage drop. In the case study, the allowance range of feeding voltage is 22.5∼27.5 kV, AT-fed AC electric railroad system circuit is analyzed by loop equation both normal and extension modes. The simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The results show that single-phase STATCOM can reduce the voltage drop in the feeding circuit and improve the power quality at AC electric railroad system by compensating the reactive power.