• Title/Summary/Keyword: Load compensator

Search Result 246, Processing Time 0.027 seconds

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part II : Simulation and Experimental Results

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, the power conditioner composed of the stand-alone single-phase squirrel cage rotor type self-excited induction generator (SEIG) driven by prime movers such as a wind turbine and a micro gas turbine (MGT) is presented by using the steady-state circuit analysis based on the two nodal admittance approaches using the per-unit frequency in addition to a new state variable defined by the per-unit slip frequency along with its performance evaluations for the stand-alone energy utilizations. The stande-alone single-phase SEIG operating performances in unregulated voltage control loop are then evaluated on line under the conditions of the speed change transients of the prime mover and the stand-alone electrical passive load power variations with the simple theoretical analysis and the efficient computation processing procedures described in the part I of this paper. In addition, a feasuible PI controlled feedback closed-loop voltage regulation scheme of the stande-alone single-phase SEIG is designed on the basis of the static VAR compensate. (SVC) and discussed in experiment for the promising stand-alone power conditioner. The experimental operating performance results are illustrated and give good agreements with the simulation ones. The simulation and experimental results of the stand-alone single-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvements.

A Study on the Static Var Compensator Application for Compensating the Train Garage's Unbalanced Voltages in Korean National Railroad (전동차 사무소의 전압불평형 보상을 위한 SVC 적용에 관한 연구)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.81-89
    • /
    • 2004
  • AC electric railroad system receives its power from 3-phase transmission system. Since trainloads are moving continuously, the voltages for the single load fluctuate in the train garage, and moreover, the fluctuating voltages generate high-order harmonics. This means the difficulty in maintaining power quality in the power system. Therefore, in this paper, the adequacy of SVC application is investigated for the train garage in KNR(Korean National Railroad). Voltage drop, voltage regulation, and unbalanced voltages are assessed in the train garage for the condition of power system both with svc and without SVC. In this paper, PSCAD/EMTDC is used for the above assessment items, and the results are compared with ones which was already designed in the field in practice for the train garage. As a result, the train garage using SVC improves power quality.

A Study on the Static Var Compensator Application for the train garage in Korean National Railroad: Analysis of Harmonic Generation of SVC (전동차 사무소의 SVC 적용에 따른 고조파 발생에 관한 연구)

  • Lee, Seung-Hyuk;Lee, Jun-Kyong;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • AC electric railroad system receives its power from 3-phase transmission system, Since, trainloads are changing continuously, the voltages for the single-phase load fluctuate in the train garage, and moreover, the fluctuating voltages generate high-order harmonics. This means that there is the difficulty in maintaining power quality in the power system. Therefore, a Static Var Compensator(SVC), which in general compensates the reactive power, is used in order to balance the trainload. In this paper, PSCAD/EMTDC is used for the analysis of harmonic generation in the train garage using SVC. The Total Harmonic Distortion(THD) of voltages is calculated using PSCAD/EMTDC dynamic simulation. As a result, the train garage using SVC improves power quality.

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.

High-Efficiency CMOS PWM DC-DC Buck Converter (고효율 CMOS PWM DC-DC 벅 컨버터)

  • Kim, Seung-Moon;Son, Sang-Jun;Hwang, In-Ho;Yu, Sung-Mok;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.398-401
    • /
    • 2011
  • This paper presents a high-efficiency CMOS PWM DC-DC buck converter. It generates a constant output voltage(1-2.8V), from an input voltage(3.4-3.9V). Inductor-based type is chosen and inductor current is controlled with PWM operation. The designed circuit consists of power switch, Pulse Width Generation, Buffer, Zero Current Sensing, Current Sensing Circuit, Clock & Ramp generation, V-I Converter, Soft Start, Compensator and Modulator. Switching Frequency is 1MHz, It operates in CCM when the load current is more than 40mA, and the maximum efficiency is 98.71% at 100mA. Output voltage ripple is 0.98mV(input voltage:3.5V, output voltage:2.5V). The performance of the designed circuit has been verified through extensive simulation using a CMOS $0.18{\mu}m$ technology.

  • PDF

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

Loading Rate Effect on the Lateral Response of H-Shape Steel Column (재하속도가 H-형강 기둥부재의 횡방향 거동에 미치는 영향)

  • Park, Minseok;Kim, Chul-Young;Han, Jongwook;Chae, Yunbyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.637-644
    • /
    • 2021
  • Dynamic response of structures can be evaluated experimentally by conducting cyclic loading tests. It has been known that steel materials are rate-dependent and the lateral response of a structure is significantly affected by the presence of axial force. However, the rate-dependency of steel column structures subjected to both axial and lateral loads has not been sufficiently studied yet due to the difficulty of controlling the axial force in a real-time manner during test. This study introduces an advanced way to apply the axial load in real-time to a column specimen using the adaptive time series (ATS) compensator and the flexible loading beam (FLB), where the H-shape steel columns made of SS275 are used for monotonic and cyclic loading tests with various loading rates with axial loads. The lateral strength and post-yield response of the steel columns are compared for each of monotonic and cyclic loading tests. The estimating equation of yield stress of various strain rate has proposed and finite element analysis were performed for comparison.

A Study on Unbalance Compensation Using SVC in Electric Railway Feeding System (전기철도 급전시스템에서 SVC를 이용한 전압불평형 보상에 관한 연구)

  • Son, Guk-Hyun;Choi, Kyu-Hyoung;Kim, Sung-Il;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3124-3132
    • /
    • 2011
  • Scott transformers have widely used to convert three phases into two phases and compensate the unbalance. Theoretically, the loads of the two secondary phases are same, no unbalance appears in the PCC(point of common coupling). But Due to the uncertainty of traction load, the unbalance are generally presented at the PCC. In this paper The amount of the voltage unbalance is expressed in the ratio of the negative sequence voltages to the positive sequence voltage. We tried to compensate the unbalance using SVC(Static Var Compensator)in an unbalance traction loads state by modeling. The SVC are installed and controlled to provide different amounts of reactive power compensation.

  • PDF

Development of EBOP element technologies for MCFC backup system (MCFC 백업용 EBOP 요소기술 개발)

  • Ryu, Sunglay;Oh, Euntae;Jeong, Jahoon;Hwang, Jungtae;Cha, Inho;Kwak, Cheolhun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.92-92
    • /
    • 2010
  • 여수 국가산업단지, 삼성전자 정전사례에서 볼 수 있듯이 대규모 정전사고는 수백억 이상의 경제적 손실이 뒤따른다. 공장 내에 자체 발전소가 있지만 매번 이런 사고가 재연되어 근본적인 해결책이 필요한 상황이다. UPS 및 디젤발전기를 사용하는 경우, 정전사고로 시 UPS DC bus전압이 일정 수준 이하로 떨어지면 발전기가 기동하여 에너지를 공급하는데 발전기의 특성에 따라 전압의 변동이 심하고 초기기동실패 사례가 종종 보고되고 있다. 본 연구는 연료전지와 전력저장장치의 연계를 통해 산업설비에 안정적으로 전원을 공급하고자 하는 방법에 관한 것으로 연계 제어 로직개발과 Load Leveler, Compensator, STS 등 구성요소 개발을 주요 연구 내용으로 하고 있다. 고온형 연료전지의 열적 안정성을 유지하면서 독립전원의 부하 변동에 대응하기 위한 부가 설비가 기존 제품에 추가 장착되어야 하며, 연계 제어 알고리즘의 확보를 위하여 연료전지 모델링 및 통합시스템 시뮬레이션을 수행하였다. 본 연구에서는 이상과 같은 시뮬레이션 및 백업 모듈 설계 결과를 제시하고자 한다.

  • PDF