• Title/Summary/Keyword: Load bearing capacity

Search Result 1,136, Processing Time 0.027 seconds

Investigation on the failure type of tower segments under equivalent static wind loads

  • Li, Yue;Xie, Qiang;Yang, Zheng
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.161-171
    • /
    • 2022
  • This paper presents a failure type assessment curve method to judge the failure type of transmission tower segments. This novel method considers the equivalent static wind load characteristics and the transmission tower members' load-bearing capacities based on numerical simulations. This method can help judge the failure types according to the relative positions between the actual state points and the assessment curves of transmission tower segments. If the extended line of the actual state point intersects with the horizontal part's assessment curve, the segment would lose load-bearing capacity due to the diagonal members' failure. Another scenario occurs when the intersection point is in the oblique part, indicating that the broken main members have caused the tower segment to fail. The proposed method is verified by practical engineering case studies and static tests on the scaled tower segments.

Prediction on Ultimate Vertical and Horizontal Bearing Capacity of Steel Pipe Piles by Means of PAR (PAR에 의한 강관 말뚝의 극한 수직 및 수평 지지력 예측)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 1997
  • A predicting method for ultimate vertical and horizontal bearing capacity by means of PAR(Pile Analysis Routines) was suggested. Based on the static pile load test data, case studies by means of PAR were performed. Ultimate pile capacity predicted by PAR was within 15% error range of that determined by stairs pile load tests. Also, the results of static pile load test, statnamic tests and PDA data performed on pipe piles were compared and, by using PAR, ultimate pile capacity was determined. Distributions of atrial pile load could be predicted and load transfer analysis could be done approximately by those distributions.

  • PDF

Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil (사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가)

  • Park, Jeong Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure's own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.

Estimation of resistance coefficient of PHC bored pile by Load Test II (재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In Europe and the United States, the use of limit states design has almost been established for pile foundation design. According to the global trend, the Ministry of Land, Transport and Maritime Affairs has established the basic design criteria of the bridge under the limit state design method. However, it is difficult to reflect on the design right now because of lack of research on resistance coefficient of the pile method and ground condition. In this study, to obtain the resistance coefficient of PHC bored pile which is widely used in Korea, the bearing capacity calculated by the LH design standard and the bridge design standard method, the static load test(21 times) and the dynamic load test(EOID 21 times, Restrike 21) The reliability analysis was performed on the results. The analysis of the resistance coefficient of PHC bored pile by loading test was analyzed by adding more than two times data. As a result, the resistance coefficient obtained from the static load test(ultimate bearing capacity) was 0.64 ~ 0.83 according to the design formula and the target reliability index, and the resistance coefficient obtained from the dynamic load test(ultimate bearing capacity) was 0.42~0.55. Respectively. The resistance coefficient obtained from the modified bearing capacity of dynamic load test(EOID's ultimate end bearing capacity + restrike's ultimate skin bearing capacity) was 0.55~0.71, which was reduced to about 14% when compared with the resistance coefficient obtained by the static load test(ultimate bearing capacity). As a result of the addition of the data, the resistivity coefficient was not changed significantly, even if the data were increased more than 2 times by the same value or 0.04 as the previous resistance coefficient. In conclusion, the overall resistance coefficient calculated by the static load test and dynamic load tests in this study is larger than the resistance coefficient of 0.3 suggested by the bridge design standard(2015).

Vertical Load Transfer Mechanism of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 수직 하중전이 특성)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Jang, Hwa-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.29-39
    • /
    • 2015
  • The vertical load imposed on the bucket foundation is transferred from the soil inside the bucket to the bottom of the foundation, and also to the outer surface of the skirt. For the design of a bucket foundation installed in sand, the vertical load transfer characteristics have to be clearly identified. However, the response of bucket foundations in sand subjected to a vertical load has not been investigated. In this study, we performed two-dimensional axisymmetric finite element analyses and investigated the vertical load transfer mechanism of bucket foundation installed in sand. The end bearing capacity of bucket foundation is shown to be larger than that of the shallow foundation, whereas the frictional resistance is smaller than that for a pile. The end bearing capacity of the bucket foundation is larger than the shallow foundation because the shear stress acting on the skirt pushes down and enlarges the failure surface. The skin friction is smaller than the pile because the settlement induces horizontal movement of the soil below the tip of the foundation and reduces the normal stress acting at the bottom part of the skirt. The calculated bearing capacity of the bucket foundation is larger than the sum of end bearing capacity of shallow foundation and skin friction of pile. This is because the increment of the end bearing capacity is larger than the reduction in the skin friction.

Evaluation of Bearing Capacity for Permeable Pavement using Geocell (지오셀을 이용한 투수성 포장의 지지력 평가)

  • Lee, Su-Hyung;Yoo, In-Kyoon;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • This paper presents the results of investigation into bearing capacity of a geocell reinforced load base. In order to analyze variation of bearing capacity of the geocell reinforced road base comparing to without reinforced geocell road base, a series of full-scale tests were performed and measured using FWD (Falling Weight Deflectometer). The results indicate that bearing capacity of geocell (T=1.5 mm) reinforecd road base increase than the unreinforced road base.

A Model Test Study on the Bearing Capacity of the Crushed Stone Pile (쇄석말뚝의 지지력 특성에 관한 모형시험 연구)

  • 이상익;박용원;김병일;윤길림
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.299-306
    • /
    • 2001
  • Crushed Stone Pile(CSP) is one of the ground improvement methods available to loose sand and clayey ground by forming compacted CSP in the weak soil layer. The effects of this method are enhancement of ground bearing capacity, reduction of settlement and prevention of lateral ground movement in cohesive layer, reduction of liquefaction potential in sandy ground. This study performs model tests in 1.0m${\times}$1.0m${\times}$1.0m and 1.5m${\times}$1.5m${\times}$l.2m model tank to observe bearing capacity of CSP treated ground. The area replacement ratio of CSP composite ground varies 20%, 30% and 40% with square grid pattern. After the composite ground was consolidated under pressure of 0.5kg/$\textrm{cm}^2$ and 1.0kg/$\textrm{cm}^2$, load tests were carried out. The results show that ultimate bearing capacity increases with area replacement ratio and the preconsolidation pressure of ground.

  • PDF

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Research on bearing characteristics of socket-spigot template supporting system

  • Guo, Yan;Hu, Chang-Ming;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.869-887
    • /
    • 2016
  • The socket-spigot template supporting system is widely used in engineering applications in China. As a newer type of support structure, there has been growing research interest in its bearing capacity. In this paper, four vertical bearing capacity tests were carried out on the basic mechanical unit frame of a socket-spigot template supporting system. The first goal was to explore the influence of the node semi-rigid degree and the longitudinal spacing of the upright tube on the vertical bearing capacity. The second objective was to analyze the displacement trend and the failure mode during the loading process. This paper presents numerical analysis of the vertical bearing capacity of the unit frames using the finite element software ANSYS. It revealed the relationship between the node semi-rigid degree and the vertical bearing capacity, that the two-linear reinforcement model of elastic-plastic material can be used to analyze the socket-spigot template supporting system, and, through node entity model analysis, that the load transfer direction greatly influences the node bearing area. Finally, this paper indicates the results of on-site application performance experiments, shows that the supporting system has adequate bearing capacity and stability, and comments on the common work performance of a socket and fastener scaffold.

The Bending and the Bearing Capacity of Bonding Method of Steel Piles into Pile Caps (강관말뚝 두부보강 방법의 휨내력 및 압축내력 특성)

  • 오성남;유제남;홍성영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.389-396
    • /
    • 2002
  • Engineers should be careful in the design of bonding piles into pile caps because they are weak points in the pile foundation. Therefore in this study, the mechanism of bonding piles into pile caps was explained, and the design method of the composite bonding method was proposed. And the proposed design method was verified in comparison with the result of the full scale test. Also, the characteristic for the bearing capacity and the mechanism of compressive load of bonding method were analyzed.

  • PDF