• Title/Summary/Keyword: Load bearing behavior

Search Result 486, Processing Time 0.026 seconds

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

A Study on the Characteristic Behavior of the Lateral Load Piles using the Strain Wedge Model and Laboratory Model Test (실내모형실험과 변형률 쐐기모델을 이용한 수평하중을 받는 말뚝의 거동 특성에 관한 연구)

  • Kim, HongTaek;Han, YeonJin;Kim HongLak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • The most of original horizontal bearing capacity theory of the pile is not efficiently to consider interaction between soil and pile because it is only to consider the earth pressure theory and separately the ground form pile. In recent, in order to improve the pile technology, it is necessary to confirm the real behaviour characteristics of pile under lateral load. Hence, to evaluate the behaviour characteristics of the single and group pile under lateral loads using the strain wedge model that could consider the interaction between soil and piles. Primarily, laboratory scale down model tests was carried out to predict the behaviour characteristics on real size piles using the strain wedge model. The comparative analyses between model test and numerical analysis for the evaluation of whole behaviour were conducted.

A Study on Load Bearing Capacity of Composite Member with Steel Rib and Shotcrete in NATM Tunnel (NATM 터널에서 강지보와 숏크리트 합성부재의 하중지지력에 관한 연구)

  • Moon, Sang Hwa;Shin, Young Wan;Kim, Seung Hwan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.221-229
    • /
    • 2012
  • Steel ribs such as H-beam or lattice girder are often reinforced to secure the stability of NATM tunnel when the ground is in the bad condition. When designing, however, steel ribs are not often taken into consideration on the numerical analysis when they are regarded as temporary tunnel supports until shotcrete shows its best performance or if they are, there are various modeling methods. This study shows behavior and loading capacity of steel ribs and shotcrete through the strength test on the bending, pressure and full-scaled. Also, we conducted and analyzed the experiment of composite member consisting of shotcrete and steel ribs under the same condition. Through the result, we can find the fact that shotcrete and steel ribs do not work as one unit because of slipping on the boundary. Also, when numerical analyzing, it was concluded that steel ribs cover all bending moment and shotcrete and steel ribs share with axial force according to the compressive strength.

Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile (개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석)

  • Lee, Junho;Ji, Su-Bin;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2017
  • This study analyzes behavior of bearing capacity of open-ended pipe pile from laboratory experiment results. Unlike the conventional pipe piles, cone penetration is implemented into the inside of the pipe pile. During the cone penetration, cone driving energy helps densification of plugged soils and soils below the pile end. Sand pluviator was used to obtain homogeneous soil layers. Two kinds of piles with different pile outer surface roughness were prepared, and two different drop heights of pile driving were applied. Eight experimental cases varying pile outer surface roughness, pile driving energy for conventional and cone penetration implemented piles were conducted. From the experiments, ultimate load of the pile increased approximately by 70% for increased pile driving height, and it increased by 21% for rougher surface pile. When cone penetration is implemented, the ultimate load increased by 40% in average.

Behavior of Floating Base Plate by Stress Delivery Mechanism (부양형 팽이기초의 하중전달 메커니즘에 따른 거동)

  • Chung, Jin-Hyuck;Jung, Hye-Kwun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • Up to now, common studies of top base have concentrated upon bearing capacity and settlement by in-situ loading test in Japan and Korea. But most of all preceding study for top base must analyze how to deliver overburden loading on bottom of foundation. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test. Analyzing the load delivery mechanism of top base, it was found that the division rate of load reduction of top base for overburden load was largest in peripheral skin friction between the top base and the crushed stone. Further, total stress dispersion angle of Top-Base Foundation including internal stress dispersion effect of top base was $41.8^{\circ}$ and total stress dispersion angle of Floating Top Base was $44.5^{\circ}$.

Compressive behavior of reinforced concrete columns confined by multi-spiral hoops

  • Chen, Y.;Feng, J.;Yin, S.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.341-355
    • /
    • 2012
  • Numerical studies are performed to predict the stress-strain behavior of rectangular RC columns confined by multi-spiral hoops under axial and eccentric compressions. Using the commercial finite element package ABAQUS, the Drucker-Prager criterion and the yield surface are adopted for damaged plasticity concrete. The proposed finite element models are compared with the published experimental data. Parametric studies on concrete grades, confinement arrangement, diameter and spacing of hoops and eccentricity of load are followed. Numerical results have shown good agreements with experimental values, and indicated a proper constitutive law and model for concrete. Cross-sectional areas and spacing of the hoops have significant effect on the bearing capacity. It can be concluded that rectangular RC columns confined by multi-spiral hoops show better performance than the conventional ones.

Behavior of SCP Improved Ground with Installation of Sheet Pile (Sheet Pile 설치에 따른 SCP개량지반의 거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.211-218
    • /
    • 2002
  • The paper is to show the behavior of composit ground which is installed with sheet pile in soft soil improved by sand compaction pile. The results of load-settlement relationship, earth pressure, stress concentration characteristics, and final water content were obtained by centrifuge model test. Two cases of tests, installation of sheet pile on the corner and both side of the loading plate for the improved SCP ground which was designed twice of the footing width, were performed for the tests under the vertical and horizontal loading and both side of corner. Finite element program(CRISP) for sand compaction pile using elasto-plastic model and numerical analysis for soft soil using modified cam-clay constitutive equation were compared and analized with the results of model tests. The result of analysis show the increased bearing capacity of soil after, SCP and sheet pile was installed.

  • PDF

Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints (동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계)

  • Jo, Deok-Hyeon;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.