• 제목/요약/키워드: Load Unbalance Factor

검색결과 48건 처리시간 0.02초

부하 불평형율에 대한 새로운 해석 (A New Analysis for Load Unbalance Factor)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Most of the load distributions in low voltage power feeder distribution systems are designed with approximately balanced and connected at the three phase four wire systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating load unbalance. Load unbalance factor is mainly affected by the impedance of load system. Unbalanced current will draw a highly unbalanced voltage. This paper presents a new calculation method for unbalance factor under the load variation at the three phase four wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared with the current unbalance factor. Two methods are indicated similar results.

부하 변동에 의한 전압불평형율의 특성 해석 (Analysis on the Characteristics of Voltage Unbalance Factor by Load Variations)

  • 김종겸;박영진;이은웅
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.47-53
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance factor is mainly affected by load system rather than stable power system. Unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared by the current unbalance factor. Two methods are indicated similar results. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. Each phase has an impedance each other by the unbalanced operation pattern and give rise to voltage unbalance.

3상 4선식 부하설비의 전압, 전류 및 부하 불평형율 측정 분석 (The measurement & Analysis of Voltage, Current and Load Unbalance Factor at Three Phase Four Wire Load System)

  • 김종겸;박영진;이동주;이종한;정종호;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.28-30
    • /
    • 2005
  • This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. This system is composed of three one-phase transformer with each other capacity. Current unbalance factor is measured by the power quality measurement apparatus and compared by the load unbalance factor. Each phase has an impedance each other by the unbalanced load operation pattern and give rise to voltage unbalance.

  • PDF

전압, 전류 및 부하 불평형율에 대한 비교 연구 (The Comparison Study for Voltage, Current and Load Unbalance Factor)

  • 김종겸;박영진;이은웅
    • 전기학회논문지P
    • /
    • 제54권2호
    • /
    • pp.88-93
    • /
    • 2005
  • Most of the LV customer have been applied the distribution system of 3-phase four wire system because of its advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But uneven load distribution or unclean voltage quality has occurred various problems such as de-rating, losses increase and vibration, etc. In this paper, voltage, current and power waveform in the actual fields have measured and analyzed in relation with internationally allowable voltage unbalance limits and compared the current unbalance factor with the load unbalance factor.

선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구 (A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load)

  • 김종겸;김지명
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.

선간전압과 상전압에 대한 전압불평형율의 비교 (Comparison of Voltage Unbalance Factor for Line and Phase Voltage)

  • 김종겸;박영진;이은웅
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

전압, 전류 및 부하 불평형율에 대한 비교 연구 (The Comparison Study for Voltage, Current and Load Unbalance Factor)

  • 김종겸;박영진;정종호;이은웅
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.115-120
    • /
    • 2004
  • Most of the LV customer have been applied the distribution system of 3-phase four wire system because of its advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But uneven load distribution or unclean voltage quality has occurred various problems such as do-rating, losses increase and vibration, etc. In this paper, voltage, current and power waveform in the actual fields have measured and analyzed in relation with internationally allowable voltage unbalance limits and compared the current unbalance factor with the load unbalance factor.

  • PDF

비대칭 전압 불평형에 의한 유도전동기의 동작특성 해석 (Analysis for Operation Characteristics of Induction Motor at Asymmetric Voltage Unbalance)

  • 김종겸;박영진;이은웅;김일중;손홍관;정종호;이동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.791-793
    • /
    • 2004
  • Voltage unbalance is generated by the load and impedance mismatching at the 3-phase 4-wire system of customer load. Voltage unbalance factor can be changed by the voltage amplitude or phase angle, and both. A small voltage unbalance is connected to high current unbalance. If the voltage unbalance is generated at the joint system of 1-phase and 3-phase load, Induction motor due to the current unbalance increase is generated loss, noise and torque ripple. In order to analyze the effect by voltage unbalance, it is necessary to the consideration of amplitude and phase angle. In this paper, We analyzed the effects that induction motor is affected by asymmetric voltage unbalance

  • PDF

불평형 전압 운전시의 역률보상용 커패시터 특성 연구 (A Study on the Characteristics for Power Capacitor under the Voltage Unbalance Operation)

  • 김일중;김종겸
    • 전기학회논문지P
    • /
    • 제57권1호
    • /
    • pp.36-40
    • /
    • 2008
  • Most of the low-voltage feeder are designed with approximately balanced and connected at the three phase four wire systems. However, Most of the power distribution systems' load which is composed of single or three phase are unbalanced by generating load unbalance. Unbalanced current will draw a highly unbalanced voltage. The power factor of an induction motor at rated operation is between 25 and 90%, depending on the size and speed of the motor. However, many induction motors operate below the nominal rating, resulting in poor power factor. This condition needs power factor improvement. Addition of power capacitor at the motor terminal may draw to stress due to voltage unbalance. This paper presents operation characteristics on steady states of a three-phase induction motor under unbalanced voltages with power capacitor. The existence of voltage unbalance have an effect on stress of power capacitor.

전압불평형율의 현장측정 및 분석 (Field Measurement and Analysis of Voltage Unbalance Factor)

  • 정종호;박영진;이은웅;김종겸
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.41-46
    • /
    • 2005
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But voltage unbalance more commonly emerges in individual customer loads due to phase load unbalance, especially where, single-phase power loads are used. Voltage unbalance factor(VUF) represents the loss of symmetry in the supply(magnitude and angle). It leads some problems such as de-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with internationally allowable voltage unbalance limits.