• Title/Summary/Keyword: Load Power Monitoring

Search Result 185, Processing Time 0.028 seconds

Forecasting Electric Power Demand Using Census Information and Electric Power Load (센서스 정보 및 전력 부하를 활용한 전력 수요 예측)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-46
    • /
    • 2013
  • In order to develop an accurate analytical model for domestic electricity demand forecasting, we propose a prediction method of the electric power demand pattern by combining SMO classification techniques and a dimension reduction conceptualized subspace clustering techniques suitable for high-dimensional data cluster analysis. In terms of electricity demand pattern prediction, hourly electricity load patterns and the demographic and geographic characteristics can be analyzed by integrating the wireless load monitoring data as well as sub-regional unit of census information. There are composed of a total of 18 characteristics clusters in the prediction result for the sub-regional demand pattern by using census information and power load of Seoul metropolitan area. The power demand pattern prediction accuracy was approximately 85%.

Protective Insulation Monitoring Device in IT Earth Systems (IT접지방식의 보호를 위한 활선절연저항 감시기)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.209-213
    • /
    • 2015
  • With the increasing popularity of renewable generation systems and the advancement of power electronics, DC distribution systems have recently received considerable research attention. DC distribution has numerous advantages, including reliability, power quality, and efficiency. Owing to these advantages, DC distribution has been applied to data centers and power quality-sensitive electronic load conditions. Because grounding electrodes in DC are much more susceptible to corrosion than in AC, the IT system defined in IEC Standard 60364 may be a good candidate for an earthing method for DC distribution systems. In addition, IEC Standard 61557 specifies the requirements for insulation monitoring devices (IMD) for protection of the IT system, which continuously monitors the insulation resistances between the power lines and the earth. This paper discusses the development and evaluation of IMD to promote the reliability of distribution systems and increase safety of humans and facilities.

Development of Distribution Transformer with Condition Monitoring Sensors and Data Processing Unit (상태감시용 센서를 내장한 배전용 변압기 및 데이터 처리장치 개발)

  • Jung, Joon-Hong;Yu, Nam-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.201_202
    • /
    • 2009
  • This paper presents a design methodology of a distribution transformer with condition monitoring sensors and its data processing unit. The proposed distribution transformer includes various type of condition monitoring sensors such as load current/voltage, temperature and heat aging of insulating oil. The data processing unit is installed at the distribution transformer site. It integrates sensed data and transmits these to a central server system. The proposed distribution transformer and its data processing unit will help an on-line condition monitoring system for distribution transformers.

  • PDF

A Trip Coil Fault Detection of Circuit Breaker (차단기 트립코일 이상감지 장치)

  • Youn, Ju-Houc;Lee, Jong-Hun;Park, Noh-Sik;Lee, Dong-Hea
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • The circuit breaker of power distribution board is essential part for the protection of electrical disaster from load short, trouble of power system. For the normal operation of circuit breaker, trip coil of the circuit breaker can cut the mechanical contact of circuit breaker from the detection of power system troubles. This paper presents a design and experimental results of trip coil fault detection system for the real time monitoring of the circuit breaker. The designed system is consisted by the trip coil fault detector which is connected to the each circuit breaker and remote monitoring unit. The trip coil fault detector can detect the impedance and operating voltage of the trip coil, and the detected values are compared with the normal state. And the remote monitoring unit can be connected to the 32 channels of trip coil fault detectors by serial communication. From the designed system, the fault and normal states of the trip coil can be remotely monitored in real time. The designed system is verified by the practical circuit breaker of power distribution board. And the results shows the effectiveness of the designed system.

Demand Controller Management System using Power Line Modem (전력선 모뎀을 이용한 최대 수요전력 관리 시스템)

  • Kim, Soo-Gon;Lim, Byung-Kuk;Lee, Won-Sun;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1067-1070
    • /
    • 2002
  • The maximum demand power management system(the demand controller) is an equipment for demand management. If the pre-estimated load is over the preset power, the demand controller make warnings and break the load circuit according to predefined priority. Then consumption power is maintained below the maximum demand power level. The DTU receives the control commands from demand controller, and then controls loads. In this paper, the power line cables are used for communication between the demand controller and DTUs and monitoring PC. The experiments show that the proposed system is compatible with the conventional system, and feasible for new or remodeling plant.

  • PDF

Power disturbance measurement system using discrete wavelet transform (이산웨이블릿을 이용한 전력외란 측정 시스템)

  • Lee J.M.;Kim H.G.;Choi J.H.;Lee S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.177-181
    • /
    • 2003
  • Need of power stability, reliability is increased, as using of sensitive: nonlinear load are increasing. Therefore, Power Quality Problems become the center of public interest. Many kinds of algorithms have been studied for monitoring of Power Quality Problems. Monitoring algorithms of using RMS, FT and the others are easy to applicate to system. But, it is not enough to monitor all of Foyer. Quality problems. Wavelet Transform is more proper to applicate. so, This paper presents measurement system using discrete wavelet transform.

  • PDF

Development of a Wind Turbine Monitoring System using LabVIEW (LabVIEW를 이용한 풍력발전기 모니터링 시스템 개발)

  • 남윤수;김형기;유능수;이정완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-98
    • /
    • 2003
  • A wind turbine monitoring system is essential equipment fur the performance evaluation and mechanical load analysis of a wind turbine. A monitoring system using LabVIEW is developed in this study. This system monitors signals from a meteorological mast, wind turbine generator, and tower. The discrete signals which are sampled at t Hz are automatically saved on a data file in the unit of a day. Besides these basic functions, the developed monitoring system has the other several capabilities. One of them is the information access from a remote PC through the internet. A vision image of the test site area and data files that are produced by LabVIBW software can be uploaded to the main computer located in a remote site. An emergency backup system using UPS fur the power loss on the monitoring HW is also prepared, A detail explanation for the developed wind turbine monitoring system is presented in this study.

Development of Moving and Attaching Diagnosis Device Using IoT (IoT 활용 이동착탈식 열화 진단 장치 개발)

  • Ka, Chool-Hyun;Lee, Dong-Gyu;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.596-601
    • /
    • 2017
  • The advancement and diversification of urban functions has caused an increasing need to improve the reliability of power supplies. The diversification of urban areas causes social disruptions by paralyzing urban functions during power outages. A large power outage occurs in the event of an accident, owing to the subduction of distribution lines. Therefore, in recent years, for the sake of the environment and safety, the safety diagnosis of electric power facilities has become an important issue. In this system, because thermal information changes rapidly during unattended monitoring owing to heat concentration phenomenon due to abnormal load or deterioration, studies have been conducted on the development of a device that can notify the manager at all times.

Development of Power Energy Management System for Ships including Energy Saving of Separated Load Systems (개별 부하 시스템의 에너지 절감을 포함한 선박 전력 에너지 관리 시스템 개발)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.131-139
    • /
    • 2018
  • Many ship researches have been carried out in connection with the fourth revolution, one of which focuses on EMS(energy management system). The EMS is referred to as systems for managing the energy of ships and include various systems. In this paper, we analyze the energy saving field in ship and propose a ship power energy management system including individual load control systems that can save energy in the engine room. EMS includes individual load control systems of PCS (Pump Control System), ERFCS (Engine Room Fan Control System), LCS (Load Control System), HVACS (Heating, Ventilation, Air conditioning Control System). Proposed EMS primarily conserves energy in the individual load systems of the engine room. Secondly, the integrated monitoring and control system is used to control the power generation system and the power load system to save energy.

Appliance identification algorithm using multiple classifier system (다중 분류 시스템을 이용한 가전기기 식별 알고리즘)

  • Park, Yong-Soon;Chung, Tae-Yun;Park, Sung-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2015
  • Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.