• 제목/요약/키워드: Load Model

검색결과 7,706건 처리시간 0.034초

Characterization and uncertainty of uplift load-displacement behaviour of belled piers

  • Lu, Xian-long;Qian, Zeng-zhen;Zheng, Wei-feng;Yang, Wen-zhi
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.211-234
    • /
    • 2016
  • A total of 99 full-scale field load tests at 22 sites were compiled for this study to elucidate several issues related to the load-displacement behaviour of belled piers under axial uplift loading, including (1) interpretation criteria to define various elastic, inelastic, and "failure" states for each load test from the load-displacement curve; (2) generalized correlations among these states and determinations to the predicted ultimate uplift resistances; (3) uncertainty in the resistance model factor statistics required for reliability-based ultimate limit state (ULS) design; (4) uncertainty associated with the normalized load-displacement curves and the resulting model factor statistics required for reliability-based serviceability limit state (SLS) design; and (5) variations of the combined ULS and SLS model factor statistics for reliability-based limit state designs. The approaches discussed in this study are practical and grounded realistically on the load tests of belled piers with minimal assumptions. The results on the characterization and uncertainty of uplift load-displacement behaviour of belled piers could be served as to extend the early contributions for reliability-based ULS and SLS designs.

신경회로망을 이용한 특수일 부하예측 (An Special-Day Load Forecasting Using Neural Networks)

  • 고희석;김주찬
    • 융합신호처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.53-59
    • /
    • 2004
  • 부하예측의 경우 가장 중요한 문제는 특수일의 부하를 예측하는 것이고, 따라서 본 본문은 과거 특수일 부하 데이터를 이용하여 신경회로망 모델에 의해서 특수일 피크부하를 예측하는 방법을 제시한다. 특수일 부하는 예측되었고, 예측 오차율은 광복절을 제외하고는 l∼2% 정도의 비교적 우수한 예측결과를 도출하였다. 따라서 사용한 예측 모델은 특수일의 부하에 만족스러운 정밀한 예측이 가능하고. 신경회로망은 특수일 부하 예측의 결과를 검증하기 위해 4차 직교다항식모형과 특수일 부하의 예측에효과적인 패턴 변환비를 이용한 신경회로망 모형을 구성했다. 한편, 시간별 특수일의 부하예측에도 신경회로망을 적용한 특수일 부항예측의 경우와 같은 양호한 예측결과를 보였다.

  • PDF

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법 (Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation)

  • 김홍식;문승필;최재석;노대석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS (Engine Control TCS using Throttle Angle Control and Estimated Load Torque)

  • 강상민;윤마루;선우명호
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

IPLAN을 이용한 SSSC 조류계산 모델 (SSSC model for Power Flow Study using IPLAN)

  • 국경수;김학만;이영운;오태규;장병훈;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1164-1166
    • /
    • 1999
  • This paper presents Static Synchronous Series Compensator(SSSC) model for power flow study using IPLAN. In the proposed model, SSSC is represented by the equivalent load variation. The equivalent load consists of active power load specified by user and reactive power load which is founded for considering characteristic of SSSC. And this is implemented by IPLAN which is a macro-external program for PSS/E. Using this model, SSSC can be solved in load-flow by just calling the model in PSS/E. The proposed model was applied to a realistic power system for validity test.

  • PDF

근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측 (Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory)

  • 최철현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

불규칙 피로하중을 받는 2인승용 자전거의 차대에 관한 내구성 연구 (Durability Study on Two-passenger Bicycle Frame under Non-uniform Fatigue Load)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.92-98
    • /
    • 2015
  • This study investigates the durability of a two-passenger bicycle frame under non-uniform fatigue load. The bicycle frame of Model 1 installed with reinforcement support has a 20% lower maximum equivalent stress than the existing Model 2. Model 1 has a maximum total deformation that is less than half that of Model 2. Model 1 has a higher maximum fatigue life than Model 2. In addition, Model 1 has lower fatigue damage than Model 2. Thus, the bicycle frame of Model 1 installed with reinforcement support can be described as safer, as it offers more strength than Model 2. Applying this result to the design of a real two-passenger bicycle frame under non-uniform fatigue load can effectively prevent fatigue damage and improve durability.