• Title/Summary/Keyword: Load History

Search Result 580, Processing Time 0.022 seconds

A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions (차량과 콘크리트 교각의 직접충돌해석법과 충돌하중이력곡선을 이용한 간접충돌해석법 비교연구)

  • Kim, WooSeok;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In design standards such as AASHTO LRFD and Korea Highway Bridge Design, the dynamic behaviors under the impact loading has not been considered and it recommends of using a static force for designing bridge column against vehicle collisions. Accordingly, in this study, models of vehicle collisions to concrete bridge column were developed with various boundary conditions in order to take into account dynamic behaviour of the column. Cargo trucks of 10tons, 16tons and 38tons were selected and a typical type of concrete bridge pier column along the Kyungbu highway in Korea was selected for this study. Results from this study indicate that the static load specified in the design standards are too small compared to results obtained in this study. It was also found that a consideration of the bridge superstructure allowed smaller damages of concrete bridge pier column under truck impact loadings. Furthermore, a comparison study of direct impact analysis of vehicle to bridge-column with in-direct impact analysis using load-time history functions was performed. The in-direct impact analysis shows that the use of load-time history graph improves the computational cost up to 92% and predict the behaviors of the bridge column under the impact loadings well. The obtained load-time history graph could be easily applied to several existing models.

Development of Train Load Model for Railway Bridge Time-History Analysis (철도교량의 동해석을 위한 하중모델의 개발)

  • 김현민;오지택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.97-102
    • /
    • 2003
  • A real train load fluctuates along the track because of complicated movements(Bouncing, Rolling, Pitching and Yawing) and rail conditions. This research has for its object in development of a numerical real train load model including fluctuation characteristics of lateral forces. It is based on Klingel movement theory of a wheelset on straight track it presents a propriety of application by comparison between a 3D-Numerical analysis result using this train load model and a measured data. And this paper presents further study subject to improve a method about the train load modeling.

  • PDF

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

Study on Fatigue Fracture at Disk Brake (원판브레이크에서의 피로파괴연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.201-206
    • /
    • 2009
  • This study investigates fatigue life and possibility damaged at disk brake of automobile by the simulation of fatigue analysis. Among nonconstant fatigue loads, the case of 'SAE Bracket History' which is the severest at the variation of load tends to be most unstable. The case of 'Sample History' which becomes slower at the variation of load tends to be most stable. The value of maximum relative damage in case of 'SAE Bracket History' is occurred near the average stress '0' and this case can be shown to have the possibility to affect more damage than another case. As the result of this study is applied to automobile parts with non constant loads, durability can be improved during drive by preventing any damage.

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

Assessment of the Degree of Fatigue Damage in Steel Plate-Girder Railway Bridges According to Span Length (지간장에 따른 강판형 철도교의 피로피해도 평가)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Nam, Wang-Hyone
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.313-320
    • /
    • 1999
  • Steel railway bridge gets vibration from moving load ; additionally, this kind of moving load is going to be a sufficient reason, which causes fatigue damage to steel railway bridge. Fatigue damage and stress curve were raised by moving load depends on span length in steel railway bridge. In other words, stress curve appears index regarding every axial load in short span, but self weight lets stress curve's change decrease in proportion to increasing span length. Thereby, we have studied that how the steel railway bridge appear fatigue damage in proportion to span length of steel railway bridge. Dynamic strain was measured in 4 steel plate-girder railway bridge during the trains was passing, which is located on the line of Kyoung-chun railway. And time history response analysis has been done in order to ensure actual survey. The results of this study show the decreased of the fatigue damage in steel railway bridge according to length of span. This paper ends is bases research of fatigue design in steel railway bridges according to span length.

  • PDF

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Seismic evaluation of RC stepped building frames using improved pushover analysis

  • Sarkar, Pradip;Prasad, A. Meher;Menon, Devdas
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.913-938
    • /
    • 2016
  • 'Stepped building' frames, with vertical geometric irregularity, are now increasingly encountered in modern urban constructions. This paper proposes a new approach to determine the lateral load pattern, considering the contributions from the higher modes, suitable for pushover analysis of stepped buildings. Also, a modification to the displacement coefficient method of ASCE/SEI 41-13 is proposed, based on nonlinear time history analysis of 78 stepped frames. When the newly proposed load pattern is combined with the modified displacement coefficient method, the target displacement for the stepped building frame is found to match consistently the displacement demand given by the time history analysis.

A Study on the Prediction of the Fatigue Life of a Lug through the Finite Element Analysis (FEA를 이용한 Lug의 피로 수명 평가에 관한 연구)

  • 이원석;이현우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.88-95
    • /
    • 1998
  • The purpose of this study is to predict the life of a Lug under the real service load history. The techniques of predicting a fatigue life under load spectrum are discussed and some are developed. The stress is calculated by multiplying the stress under unit force with the Finite Element Analysis. The cycles are counted by the Rainflow counting method and then the mean stress effect is considered by the suggested conversion function. The Manson's Double Linear Damage Rule is used as the cummulative damage method.

  • PDF