• Title/Summary/Keyword: Load Distributions

Search Result 459, Processing Time 0.022 seconds

Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction

  • Fu, J.Y.;Li, Q.S.;Xie, Z.N.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.357-372
    • /
    • 2005
  • Mean and extreme pressure distributions on a large cantilevered flat roof model are measured in a boundary layer wind tunnel. The largest peak suction values are observed from pressure taps beneath conical "delta-wing type" corner vortices that occur for oblique winds, then the characteristics and causes of the local peak suctions are discussed in detail. Power spectra of fluctuating wind pressures measured from some typical taps located at the roof edges under different wind directions are presented, and coherence functions of fluctuating pressures are also obtained. Based on these results, it is verified that the peak suctions are highly correlated with the conical vortices. Furthermore, according to the characteristics of wind loads on the roof, an aerodynamic solution to minimize the peak suctions by venting the leading edges and the corners of the roof is recommended. The experimental results show that the suggested strategy can effectively control the generation of the conical vortices and make a reduction of 50% in mean pressures and 25% in extreme local pressures at wind sensitive locations on the roof.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

The Combustion and Emission Characteristics with Increased Fuel Injection Pressure in a Gasoline Direct Injection Engine (가솔린 직접 분사식 엔진에서 연료 분사 압력 증가에 따른 연소 및 배기 배출물 특성)

  • Lee, Junsun;Lee, Yonggyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Recently, Performance and fuel efficiency of gasoline engines have been improved by adopting direct injection (DI) system instead of port fuel injection (PFI) system. However, injecting gasoline fuel directly into the cylinder significantly reduces the time available for mixing and evaporation. Consequently, particulate matters(PM) emissions increase. Moreover, as the emission regulations are getting more stringent, not only the mass but also the total number of PM should be reduced to satisfy the Euro VI regulations. Increasing the fuel injection pressure is one of the methods to meet this challenge. In this study, the effects of increased fuel injection pressures on combustion and emission characteristics were experimentally examined at several part load conditions in a 1.6 liter commercial gasoline direct injection engine. The main combustion durations decreased about $2{\sim}3^{\circ}$ in crank angle base by increasing the fuel injection pressure due to enhanced air-fuel mixing characteristics. The exhaust emissions and number concentration distributions of PM with particle sizes were also compared. Due to enhanced combustion characteristics, THC emissions decreased, whereas NOx emissions increased. Also, the number concentrations of PM, larger than 10 nm, also significantly decreased.

Study on Structural Safety of Car Securing Equipment for Coastal Carferry: Part I Estimation of Hull Acceleration using Direct Load Approach (국내 연안 카페리 차량 고박 장치 안전성에 관한 연구: 제I부 직접하중계산법을 이용한 선체 운동 가속도 산정)

  • Choung, Joonmo;Jo, Huisang;Lee, Kyunghoon;Lee, Young Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.440-450
    • /
    • 2016
  • The capsizing and consequent sinking of a coastal car ferry was recently reported, with numerous human casualties. The primary cause was determined to be a sudden turn with improperly stowed and secured cargo. Part I of this study introduces how long term acceleration components are determined from seakeeping analyses. A carferry with a displacement of 1,633 tonf was selected as the target vessel. Sea data that included the significant wave heights and periods were collected at four observation buoys, some of which were far away from two main voyage routes: Incheon-Jeju and Pusan-Jeju. Frequency response analyses were performed to obtain the linearized radiation force coefficients, hydrostatic stiffnesses, and wave excitation forces. Time response analyses were sequentially performed to produce the motion-induced acceleration processes. The probabilistic distributions of the acceleration components were determined using a peak and valley counting method. Long term extreme acceleration components were proposed as a final result.

Study on lateral resistance of steel-concrete composite drilled shafts by using 3D FEM (3차원 유한요소법을 이용한 강관합성 말뚝재료의 수평저항력 고찰)

  • Lee, Ju-Hyung;Shin, Hyu-Soung;Choi, Sang-Ho;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.683-690
    • /
    • 2008
  • Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.

  • PDF

Numerical studies on behaviour of bolted ball-cylinder joint under axial force

  • Guo, Xiaonong;Huang, Zewei;Xiong, Zhe;Yang, Shangfei;Peng, Li
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1323-1343
    • /
    • 2016
  • This paper presents the results of an extensive numerical analysis program devoted to the investigation of the mechanical behaviour of bolted ball-cylinder joints. The analysis program is developed by means of finite element (FE) models implemented in the non-linear code ABAQUS. The FE models have been accurately calibrated on the basis of available experimental results. It is indicated that the FE models could be used effectively to describe the mechanical performance of bolted ball-cylinder joints, including failure modes, stress distributions and load-displacement curves. Therefore, the proposed FE models could be regarded as an efficient and accurate tool to investigate the mechanical behavior of bolted ball-cylinder joints. In addition, to develop a further investigation, parametric studies were performed, varying the dimensions of hollow cylinders, rectangular tubes, convex washers and ribbed stiffener. It is found that the dimensions of hollow cylinders, rectangular tubes and ribbed stiffener influenced the mechanical behaviour of bolted ball-cylinder joints significantly. On the contrary, the effects of the dimensions of convex washers were negligible.

The Effects of Varying Foot Placement on Sit-to-stand in Patients with Hemiplegia (발의 위치가 편마비 환자의 의자에서 일어서기에 미치는 영향)

  • Kim, Jong-Man;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.30-38
    • /
    • 1997
  • The patients with hemiplegia show different body weight distribution as compared to normal subjects. These patients load their body weight more on sound leg than affected leg. The purpose of this study was to examine the effect of foot placement under three conditions: forward, intermediate, and backward placement, on body weight distribution and time needed to rise while assuming sit-to-stand. Fourteen patients with hemiplegia participated in the study. Their body weight distributions during sit-to-stand under the three different conditions were measured by a limb loader and time needed to rise was measured by a stopwatch. The data were analysed by the repeated measure of one-way ANOVA. Statistical Analysis demonstrated that body weight distribution was less asymmetric in backward foot placement. The difference of body weight bearing rate between sound leg and affected leg was significantly decreased as foot placement moved from forward to backward. These results show that backward foot placement during sit-to-stand make patient with henuplegia distribute their body weight more evenly on the lower extremity.

  • PDF

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Estimation of Surface Wind Speed on the Strong Wind Damage by Typhoon (태풍으로 인한 강풍 피해 추정을 위한 지상풍 산정 연구(Ⅰ))

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.85-88
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10m level wind speed using 700hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700hPa wind, 30km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10m level, landuse data of USGS are employed. For 10m level wind speed of Typhoon Rusa in 2002, we sampled AWS point of $7.4\sim30km$ distant from typhoon center and compare them with observational data. The results show that the 10m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10m level wind speed is useful for estimating the damage structure from typhoon.

  • PDF

CFD Analysis of an Infinitely Long Slider Bearing with Two-Dimensional micro-Pockets (2차원 미세 포켓이 있는 무한장 Slider Bearing의 CFD 해석)

  • Park, Tae-Jo;Hwang, Yun-Geon;Sohn, Ja-Deok;Chung, Ho-Gyeong
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • It is reported by many researchers that the textured bearing surfaces, where many tiny micro-pockets or enclosed recesses were incorporated, can enhance the load support and reduce friction force. Recently, the basic lubrication mechanism of micro-pocketed parallel surfaces are explained in terms of "inlet suction" using continuity equation and simply cavitation condition. However, it is required that more actual cavitation condition in the pocket region should be applied to estimate exact bearing performance. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the exact lubrication characteristics of infinitely long slider bearing with micro-pockets. The results show that the pressure distributions are highly affected by pocket depths, its positions and numbers. The numerical method adopted in this paper and results can be use in optimal design of textured sliding bearings.