• Title/Summary/Keyword: Load Distributions

Search Result 461, Processing Time 0.021 seconds

Stress Analysis of a Coil Spring with Nonlinear Section (이형단면 코일 스프링의 응력해석)

  • 이인혁;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1831-1838
    • /
    • 1991
  • The deformation of coil spring with noncircular section, which is used in the engine valve of automobiles under the applied load is usually accompanied by sectional warping and additional displacements of geometric center. In this study the isoparametric beam element formulations are modified and expanded to consider these two effects. To verify these formulations, simple torsion tests are made and compared with the analysis results. For the case of the zero-pitch spring, the stress distributions of oval and circular section are coincided with those of the analysis using the solid elements. Cylindrical coil springs with oval section are analyzed. These results are agreed with those of Nagaya.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, Jun-Young;Chung, Hee-Taeg;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.84-94
    • /
    • 2003
  • It is known that tip clearance flows reduce the pressure rise, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock. Depen ding on the operating conditions, toad distributions and the position of shock-wave on the blade surface are very different close to the blade tip of the transonic compressor rotor. The load distribution and the shock-wave position close to the blade tip had the close relationship with the starting position of leakage vortex and the direction of leakage flow.

The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter (헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정)

  • Yun, Chul Yong;Kim, Deog-kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

Reliability Design using Asymptotic Variance of Inverse Cumulative Distribution Function (분위수의 점근적 분산을 이용한 신뢰성 설계)

  • Cho H.J.;Baek S.H.;Hong S.H.;Cho S.S.;Joo W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1682-1685
    • /
    • 2005
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolerance of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or estimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte-Carlo Method and got the probabilistic sensitivity. The sensitivity of structural response with respect to inconstant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

Probabilistic Fatigue Life Evaluation of Rolling Stock Structures (철도차량 구조물의 확률론적 피로수명 평가)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.89-94
    • /
    • 2003
  • Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

In-shoe Loads during Treadmill Running (트레드밀 달리기시 신발 내부의 부하에 관한 연구)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.