• 제목/요약/키워드: Load Distribution Factor

검색결과 414건 처리시간 0.031초

베어링 내부 틈새가 풍력발전기용 피치 감속기의 하중 분포와 하중 분할에 미치는 영향 분석 (Effects of Bearing Internal Clearance on the Load Distribution and Load Sharing in the Pitch Reducer for Wind Turbines)

  • 김정길;박영준;이근호;김재훈
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The pitch reducer consists of several planetary gearsets, and they should have good load distribution over gear tooth flank and load sharing among the planets to improve the durability. This work investigates how bearing internal clearances influence both the load distribution over the gear tooth flank and the planet load sharing. A whole system model is developed to analyze a pitch reducer. The model includes non-linear mesh stiffness of gears, non-linear stiffness of bearings. The results indicate that the face load factor and mesh load factor decrease, and the fatigue life of output shaft bearings increase as bearing internal clearances of output shaft decrease. Therefore, the internal clearance of output shaft bearing must be considered when designing the pitch reducer for wind turbines.

배전선로에 유도발전기 연결시 역률 변동에 관한 연구 (A study on the variation of power factor by connection of the induction generator to the distribution line)

  • 김종겸;박영진;이경배;김영국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1469-1470
    • /
    • 2015
  • Recently induction generator has been applied to many small hydro power plants. Induction generator needs a reactive power for magnetization. The reactive power of induction generator is being supplied from the supply side mostly. The use of induction generators in the power distribution grid can affect the power factor. The power factor of induction generator is fixed already during production. The power factor in the distribution system is due to the increase or decrease of the load rather than due to the induction generator. In this study, we analyzed how the power factor is changed according to the load increase or decrease in the distribution lines.

  • PDF

불평형 부하 운전시 3상 유도발전기 특성 해석 (Characteristics Analysis of 3-phase Induction Generator at the Unbalanced Load Operation)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제56권3호
    • /
    • pp.123-128
    • /
    • 2007
  • Hydro power supplies no pollution energy, mainly induction generator has been applied at the small capacity power station. The generating power of small hydro-electric power station connects on the 22.9kV distribution system or low voltage system in the case of three-phase four-wire supply system. There are side effects of various kinds in the 3-three phase 4-wire distribution system mixing 1-phase load and 3-phase load. This system generates the voltage unbalance by unbalanced load operating condition. They have various serious effects on generator and connection system. In this paper, we analyzed what kind of operation characteristic are happened in the induction generator by customer load variation at the 3-three phase 4-wire distribution system.

배전선로에 유도발전기 연결시 역률 변동에 관한 연구 (A Study on the Variation of Power Factor by Connection of the Induction Generator to the Distribution Line)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.159-163
    • /
    • 2015
  • Recently squirrel cage induction generator has been steadily applied to many small hydro power plants. Induction generator needs a reactive power for magnetization. The reactive power of induction generator is being supplied from the supply side mostly. The use of induction generators in the power distribution grid can affect the power factor. The power factor of induction generator is fixed already during production. The power factor in the distribution system is due to the increase or decrease of the load rather than due to the induction generator. In this study, we analyzed that how the increase or decrease of D/L load impacts at the change of power factor and power flow.

굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구 (A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions)

  • 박연준;유일형
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.192-204
    • /
    • 2011
  • 본 연구에서는 시공단계를 정확하게 고려하여 3차원 해석을 수행하고, 이와 동일한 결과를 나타내는 2차원 해석 결과를 얻고자 천단변위를 기준으로 하여 하중분배율을 결정하였다. 2차원 해석 결과와 3차원 해석 결과에서 천단변위의 총량에는 차이가 있어, 이를 극복하고자 각 단계에서의 천단변위 값을 총 변위량으로 나눈 '천단변위비'를 비교 대상으로 정하였다. 또한 숏벤치 공법이나 미니벤치 공법의 경우에서처럼 상하 반단면 분할굴착에서 벤치의 길이가 짧은 경우에는 하부 반단면의 굴착이 완료된 후에도 굴진면의 지지효과가 사라지지 않는 상황이 발생한다. 이러한 상황을 해석에 반영하고자 4번째 하중분배계수를 도입하여 굴진면 전진 효과를 구현하도록 하였다. 그 결과 전단면 굴착, 상하 반단면 분할굴착, 벤치 길이의 변화 및 초기 응력 상태 등을 고려한 다양한 경우에 대하여 합리적으로 하중분배율을 결정하는 방법을 제시하였다.

강상자형교의 전단력 산정을 위한 하중분배계수 (Load Distribution Factors for Determinating Shear Force in Steel Box Girder Bridges)

  • 송재호;김민욱;김일수;오진우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.88-97
    • /
    • 2011
  • 강상자형사교의 경우 국내의 도로교 설계기준이 갖추어지지 않아, 미국의 AASHTO 및 AASHTO LRFD 설계기준을 적용할 경우에는 실제의 거동과 다른 하중분배계수를 산출하게 되어 과대설계 및 과소설계를 초래할 가능성을 가지고 있다. 본 연구의 목적은 실제 거동을 바탕으로 한 강상자형 사교의 둔각부 지점에서의 전단력 산정을 위한 하중분배계수식을 제시하는 데 있다. 이를 위하여 본 연구에서는 강상자형 사교의 다양한 구조모델들에 대해 유한요소해석을 수행하고, 각 매개변수들이 강상자형사교의 하중분배계수에 미치는 영향을 분석한 후, 다중회귀분석을 수행하여 강상자형사교의 전단력 산정을 위한 하중분배계수식을 제시한다.

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.

강상자형 사교의 윤하중분배계수 (A Study on Wheel Load Distribution Factors of Skew Steel Box Girder Bridges)

  • 서창범;송재호;김일수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권4호통권56호
    • /
    • pp.148-158
    • /
    • 2009
  • 본 연구에서는 강상자형 사교의 윤하중분배계수에 관련된 외국 설계규준들(AASHTO, AASHTO LRFD)의 문제점을 파악하고, 윤하중분배계수에 영향을 미치는 주요변수에 대한 평가를 수행하였다. 또한 다양한 강상자형 사교의 모델에 대한 유한요소해석을 수행하였으며, 그 결과를 바탕으로 회귀분석을 이용하여 강상자형사교의 윤하중분배계수를 산정하는 식을 제안하였다. 본 연구 제안식의 적용 시 기존 설계 규준식의 문제점을 보완할 수 있고, 강상자형사교의 설계시 구조해석에 소요되는 시간을 절약할 수 있어, 그 타당성 및 실용성을 확인할 수 있었다.

22.9kV 배전선로 전력손실산출 기법에 관한 연구 (A Study on Calculation Method of Power Losses in 22.9kV Power Distribution Lines)

  • 황인성;홍순일;문종필
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.219-223
    • /
    • 2017
  • In this paper, we calculated the losses in the high voltage lines of power distribution system. The losses caused by high voltage lines are calculated using maximum current, resistance, loss factor, and dispersion loss factor. The accurate extraction of these factors are very important to calculate the losses exactly. Thus, the maximum loads are subdivided to regions and calculated monthly for more accurate maximum current calculation. Also, the composite resistance is calculated according to the ratio of the used wire types. In order to calculate the loss factor, the load factors according to the characteristics of each region were calculated. Finally, the losses of the distribution system is calculated by adding the losses by the transformers and the low voltage lines.

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.