• Title/Summary/Keyword: Load Control

Search Result 6,473, Processing Time 0.033 seconds

Design of a Fuzzy Speed Controller for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 설계)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1797-1802
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the LMI parameterization to calculate the gain matrices of the controller is provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter and load torque variations. Finally, it is clearly verified that the proposed control method can be used to accurately control the speed of a permanent magnet synchronous motor.

Analysis of Work Load for Developing the Control Strategy of Hybrid Agricultural Tractor (하이브리드 농업용 트랙터의 제어 전략 개발을 위한 작업 부하 분석)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.239-245
    • /
    • 2015
  • In order to control the hybrid power system efficiently, the knowledge for the required load of the system is important. The agricultural tractor performs various farm works such as plow, rotary, and baler. When it performs rotary tillage and baler operation, the generated work load is analyzed. To analyze trend of work load, moving average technique is applied to the measurement data. Optimal control inputs for the two works are obtained from simulation using the dynamic programming. The novel fundamental control strategy for parallel hybrid tractor called Max. SOC is proposed.

An Improvement Scheme of Direct Load Control Program for Electric Power Demand Management (합리적 전력수요관리를 위한 직접부하제어 사업의 개선 방안)

  • Kim, Kyu-Ho;Choi, Seung-Kil;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.81-86
    • /
    • 2007
  • This paper proposes the scheme to improve the current direct load control(DLC) program by inspecting the problems of the DLC program. In order to increase the number of the customers participating DLC program, a reduction of the base incentive and an increase of the direct load control incentive are suggested based on the interruption cost of electric power considering the characteristics of load types and the introduction of demand side bidding is recommended. Secondly, the standards of power system operations is required to control DLC program efficiently for the penalty, interruption times, the number of interrupting loads, notice time for the load interruption and the periods of the DLC program contract.

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

A Highly Efficient Dynamometer Control For Motor Drive Systems Testing (구동 시스템 시험을 위한 고성능 다이나모메터 제어)

  • Kim Gil-Dong;Shin Jeong-Ryol;Lee Han-Min;Lee Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1291-1293
    • /
    • 2004
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for moter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance.

  • PDF

An Output Voltage Balance Control of Grid Connected Inverter by Phase Current Control at Critical Load Unbalanced Condition (계통연계 인버터의 주요 부하 불평형 시 상전류 제어를 통한 부하 상전압 평형 제어)

  • Tae-Hyeon Park;Hag-Wone Kim;Kwan-Yuhl Cho;Joon-Ki Min;Won-Il Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2023
  • A grid-connected inverter can be used in grid-connected or stand-alone modes. Generally, a grid-connected inverter operates in a grid-connected mode, but the inverter operates in stand-alone mode if grid faults occur. In the stand-alone mode, the grid-connected inverter must supply electric power to a critical load that needs to receive stable power even though grid faults occur. Generally, three-phase loads are used as critical loads, but a single phase is configured in some cases. In these conditions, the critical load is required to unbalance the load power consumption, which makes the three-phase load voltage unbalancd. This unbalanced voltage problem can cause fatal problems to the three-phase critical loads, and thus must be addressed. Hence, this paper proposes an algorithm to solve this unbalanced voltage problem by the individual phase current control. The proposed method is verified using Psim simulation and experiments.

Thermal-hydraulic and load following performance analysis of a heat pipe cooled reactor

  • Guanghui Jiao;Genglei Xia;Jianjun Wang;Minjun Peng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1698-1711
    • /
    • 2024
  • Heat pipe cooled reactors have gained attention as a potential solution for nuclear power generation in space and deep sea applications because of their simple design, scalability, safety and reliability. However, under complex operating conditions, a control strategy for variable load operation is necessary. This paper presents a two-dimensional transient characteristics analysis program for a heat pipe cooled reactor and proposes a variable load control strategy using the recuperator bypass (CSURB). The program was verified against previous studies, and steady-state and step-load operating conditions were calculated. For normal operating condition, the predicted temperature distribution with constant heat pipe temperature boundary conditions agrees well with the literature, with a maximum temperature difference of 0.4 K. With the implementation of the control strategy using the recuperator bypass (CSURB) proposed in this paper, it becomes feasible to achieve variable load operation and return the system to a steady state solely through the self-regulation of the reactor, without the need to operate the control drum. The average temperature difference of the fuel does not exceed 1 % at the four power levels of 70 %,80 %, 90 % and 100 % Full power. The output power of the turbine can match the load change process, and the temperature difference between the inlet and outlet of the turbine increases as the power decreases.

A Study on the On-Line Fuzzy ULTC Controller Design Based on Multiple Load Center Points (다중 부하중심점에 기반한 온라인 퍼지 ULTC 제어기 설계에 대한 연구)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.514-521
    • /
    • 2006
  • The existing ULTC operation control strategy based on the measured data deteriorates the voltage compensation capability making the efficient corresponding to the load variation difficult by following the fixed load center point voltage. Accordingly, this paper proposes a new on-line fuzzy ULTC controller based on the designed multiple load center points which can improve the voltage compensation capability of ULTC and minimize voltage deviation by moving in real-time the load center point according to the load variation to an adequate position among the multiple load center points designed using the clustering technique. The Max-Min distance technique is adopted as the clustering technique for the decision of multiple load points from measured MTr load current and PTr voltage, and the minimum distance classifier is adopted for the decision of fuzzy output membership function. To verify the effectiveness of the proposed strategy, Visual C++ MFC-based simulation environments is developed. Finally, the superiority the proposed strategy is proved by comparing the fuzzy ULTC operation control results based on multiple load center points with the existing ULTC operation control results based on fixed load center point using the data for three day.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Anticipatory Generation Control of Fossil Power Plant for Large and Rapid Recurring Load Fluctuations (부하변동이 심한 화력발전소의 예상 발전 제어)

  • 박영문;박종근;김재철;김봉희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.6
    • /
    • pp.237-245
    • /
    • 1986
  • Most fossil steam generating units are currently being designed for base load operation and are not therefore generally suitable for large and rapid recurring load fluctuations. In particular the control systems adopted for such units are not adequate for the severe recurrent load fluctuations. In particular the control systems adopted for such units are not adequate for the severe recurrent load fluctuations that are expected by the plant supplying the power requirements of the electric are furnaces and rolling mills employed by the steel industry. This paper presents a feasible Anticipatory Control Algorithm which ensures that the fossil fuel fired plant can meet such severe requirements from the control point of view. Details of such a control algorithm and its dynamic simulation on a sample power system are also presented.

  • PDF