• Title/Summary/Keyword: Load Capacity

Search Result 4,608, Processing Time 0.035 seconds

Early Response of Cardiopulmonary Exercise Test(CPET) in Patients with Locally Advanced Non-Small Cell Lung Cancer Treated with Radiation (방사선 치료 후 폐암환자의 운동부하 심.폐 기능의 초기변화)

  • Shin, Kyeong-Cheol;Lee, Deok-Hee;Lee, Kwan-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • Background : Patients with locally advanced non-small cell lung cancer are often treated with radiation alone or in combination with chemotherapy. Both modalities have a potentially damaging effect on pulmonary function. In order to examine changes in the cardiopulmonary exercise function of patients with locally advanced non-small cell lung cancer before and after conventional radiotherapy, we conducted a prospective study involving patients with such cancer, that had received radiation therapy. Method : Resting pulmonary function test, thoracic radiographic finding and cardiopulmonary exercise test(CPET) were assessed prior to and 4 weeks following radiation therapy in 11 male patients with locally advanced non-small cell lung cancer. Patient with endobronchial mass were excluded. Results : The forces vital capacity (FVC), forced expiratory volume in 1 second ($FEV_1$ and maximal voluntary ventilation (MVV) did not decreased between before and 4 weeks after radiation but the diffusing capacity (DLCO) had decreased by 11% 4 weeks after radiation, which was not statistically significant. No changes in maximal oxygen consumption ($VO_2$max), carbon dioxide production ($VCO_2$), exercise time and work load were attributed to radiation therapy. Follow up cardiopulmonary exercise testing revealed unchanged cardiovascular function, ventilatory function and gas exchange. No difference in cardiopulmonary exercise test performance was observed between pre- and post-radiation. Conclusion : Cardiopulmonary exercise function did not decrease within the short-term after the radiation of patients with locally advanced non-small cell lung cancer.

  • PDF

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Development of Agent-based Platform for Coordinated Scheduling in Global Supply Chain (글로벌 공급사슬에서 경쟁협력 스케줄링을 위한 에이전트 기반 플랫폼 구축)

  • Lee, Jung-Seung;Choi, Seong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.213-226
    • /
    • 2011
  • In global supply chain, the scheduling problems of large products such as ships, airplanes, space shuttles, assembled constructions, and/or automobiles are complicated by nature. New scheduling systems are often developed in order to reduce inherent computational complexity. As a result, a problem can be decomposed into small sub-problems, problems that contain independently small scheduling systems integrating into the initial problem. As one of the authors experienced, DAS (Daewoo Shipbuilding Scheduling System) has adopted a two-layered hierarchical architecture. In the hierarchical architecture, individual scheduling systems composed of a high-level dock scheduler, DAS-ERECT and low-level assembly plant schedulers, DAS-PBS, DAS-3DS, DAS-NPS, and DAS-A7 try to search the best schedules under their own constraints. Moreover, the steep growth of communication technology and logistics enables it to introduce distributed multi-nation production plants by which different parts are produced by designated plants. Therefore vertical and lateral coordination among decomposed scheduling systems is necessary. No standard coordination mechanism of multiple scheduling systems exists, even though there are various scheduling systems existing in the area of scheduling research. Previous research regarding the coordination mechanism has mainly focused on external conversation without capacity model. Prior research has heavily focuses on agent-based coordination in the area of agent research. Yet, no scheduling domain has been developed. Previous research regarding the agent-based scheduling has paid its ample attention to internal coordination of scheduling process, a process that has not been efficient. In this study, we suggest a general framework for agent-based coordination of multiple scheduling systems in global supply chain. The purpose of this study was to design a standard coordination mechanism. To do so, we first define an individual scheduling agent responsible for their own plants and a meta-level coordination agent involved with each individual scheduling agent. We then suggest variables and values describing the individual scheduling agent and meta-level coordination agent. These variables and values are represented by Backus-Naur Form. Second, we suggest scheduling agent communication protocols for each scheduling agent topology classified into the system architectures, existence or nonexistence of coordinator, and directions of coordination. If there was a coordinating agent, an individual scheduling agent could communicate with another individual agent indirectly through the coordinator. On the other hand, if there was not any coordinating agent existing, an individual scheduling agent should communicate with another individual agent directly. To apply agent communication language specifically to the scheduling coordination domain, we had to additionally define an inner language, a language that suitably expresses scheduling coordination. A scheduling agent communication language is devised for the communication among agents independent of domain. We adopt three message layers which are ACL layer, scheduling coordination layer, and industry-specific layer. The ACL layer is a domain independent outer language layer. The scheduling coordination layer has terms necessary for scheduling coordination. The industry-specific layer expresses the industry specification. Third, in order to improve the efficiency of communication among scheduling agents and avoid possible infinite loops, we suggest a look-ahead load balancing model which supports to monitor participating agents and to analyze the status of the agents. To build the look-ahead load balancing model, the status of participating agents should be monitored. Most of all, the amount of sharing information should be considered. If complete information is collected, updating and maintenance cost of sharing information will be increasing although the frequency of communication will be decreasing. Therefore the level of detail and updating period of sharing information should be decided contingently. By means of this standard coordination mechanism, we can easily model coordination processes of multiple scheduling systems into supply chain. Finally, we apply this mechanism to shipbuilding domain and develop a prototype system which consists of a dock-scheduling agent, four assembly- plant-scheduling agents, and a meta-level coordination agent. A series of experiments using the real world data are used to empirically examine this mechanism. The results of this study show that the effect of agent-based platform on coordinated scheduling is evident in terms of the number of tardy jobs, tardiness, and makespan.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Changes of Heart Rate During Marathon Running (장거리 (마라톤)선수에서의 전 경기중 심박동수의 변화)

  • Kim, In-Kyo;Lee, Jung-Woo;Hah, Jong-Sik;Ryu, Yun-Hee;Choi, Jung-Ok;Kim, Ki-Ho
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.1-12
    • /
    • 1979
  • To evaluate the present status of physical fittness of Korean long distance runners, body fat, pulmonary functions, maximal oxygen intake and oxygen debt were measured in 5 elite marathoners (A group), 6 college student runners (B group) and 3 middle school student runners (C group). After laboratory tests, full course marathon running was performed in 2 elite marathoners during which their heart rates were monitored continuously. The results are summerized as follows: 1) Total body fat in all three groups are in the range of 13-15% of their body weight. 2) In all three groups, average values of various pulmonary functions were within the normal limits, but those of tidal volume were higher and respiratory rate were lower in comparison to normal values. These phenomena may represent respiratory adaptations against training. The average resting oxygen consumptions in A,B and C were $322{\pm}23$, $278{\pm}14$ and $287{\pm}16$m1/min, respectively. 3) In all three groups, resting blood pressures were in the normal range, but the resting heart rate was slightly lower in groups A $(56{\pm}3\;beats/min)$ and B $(64{\pm}2\;beats/min)$ and higher in group C $(82{\pm}9\;beats/min)$ in comparison to normal values. These changes in cardiovascular functions in marathoners may also represent adaptive phenomena. 4) During treadmill running the minute ventilation and oxygen consumption of the runners increased lineally with work load in all three groups. When the oxygen consumption was related to heart rate, it appeared to be a exponential function of the heart rate in all three groups. 5) The average maximal heart rates during maximal work were $196{\pm}3$, $191{\pm}3$ and $196{\pm}5\;beats/min$ for groups A,B and C, respectively. Maximal oxygen intakes were $84.2{\pm}3.3\;ml/min/kg$ in group A, $65.2{\pm}1.1\;ml/min/kg$ in group B and $58.7{\pm}0.4\;ml/min/kg$ in group C. 6) In all three groups, oxygen debts and the rates of recovery of heart rate after treadmill running were lower than those of long ditsance runners reported previously. 7) The 40 km running time in 2 elite marathoners was recorded to be $2^{\circ}42'25'$, and their mean speed was 243 m/min (ranged 218 to 274 m/min). The heart rate appeared to increase lineally with running speed, and the total energy expenditure during 40 km running was approximately 1360.2 Calories. From these it can be speculated that if their heart rates were maintained at 166 beats/min during the full course of marathon running, their records would be arround $2^{\circ}15'$. Based on these results, we may suspect that a successful long distance running is, in part, dependent on the economical utilization of one's aerobic capacity.

  • PDF

The Changes of Breathing Pattern Observed During Maximal Exercise Testing in the Patients with Chronic Airflow Obstruction : the Correlation Between the Change of Inspiratory Duty Cycle and the Degree of Airflow Obstruction (만성기도폐쇄 환자에서 최대운동부하시 관찰되는 호흡양상 - 기도폐쇄정도와 흡기책임비율변화 사이의 상관관계 -)

  • Lee, Kye-Young;Jee, Young-Koo;Kim, Keun-Youl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.574-582
    • /
    • 1997
  • Background : Normal humans meet the increased ventilatory need during exercise initially by the increase of tidal volume (TV) and later by the increase of respiratory frequency (Rf). And the inspiratory duty cycle (Ti/Ttot) is also increased more than 50% for the compensation of the decrease of respiratory cycle provoked by the increase of respiratory frequency. The patients with chronic airflow obstruction show rapid and shallow breathing pattern during exercise because of the decreased ventilatory capacity and the increased dead space ventilation. However, the studies about the change of inspiratory duty cycle are only a few and there is no literature about the relationship between the change of inspiratory duty cycle and the degree of airflow obstruction. Methods : The subjects were the twelve patients with chronic airflow obstruction (CAO) and ten normal people. The incremental exercise test was done. The increase of work load was 10 W in CAO group and 25 W in normal control group. The analysis of the results was done by the comparison of the parameters such as minute ventilation (VE), TV, Rf, physiologic dead space (Vd/Vt), and inspiratory duty cycle between the two groups. Each parameters were compared after transformation into % control duration base that means dividing the total exercise time into five fractions and % control duration data were obtained at rest, 20%, 40%, 60%, 80%, and max. Statistical analysis was done by repeated measure ANOVA using SAS program. Results : The changes of VE and TV were significantly different between two groups while the change of Rf was not significant. The decrease of Vd/Vt was significantly low in CAO group. Ti/Ttot was markedly increased from 38.4 + 3.0% at rest to 48.6 + 4.5% at max in normal control group while Ti/Ttot showed little change from 40.5 + 2.2% at rest to 42.6 + 3.5% at max. And the change of inspiratory duty cycle showed highly good correlation with the degree of airflow obstruction (FEV1%). (r=0.8151, p < 0.05). Conclusions : The increase of Ti/Ttot during exercise observed in normal humans is absent in the patients with CAO and the change of Ti/Ttot is well correlated with the degree of airflow obstruction.

  • PDF