• Title/Summary/Keyword: LoRa통신

Search Result 133, Processing Time 0.023 seconds

Implementation of Automatic Identification Monitoring System for Fishing Gears based on Wireless Communication Network and Establishment of Test Environment (무선통신망 기반 어구자동식별 모니터링 시스템 구현 및 시험환경 구축)

  • Joung, JooMyeong;Park, HyeJung;Kim, MinSeok;Kwak, Myoung-Shin;Seon, Hwi-Joon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In order to prevent illegal fishing and reduce lost fishing gear, it is necessary to develop a constant and continuous fishing gear monitoring system in the marine environment. In this paper, we design a long-term operational, reliable system model with communication coverage of more than 25Km considering the reality of gradually expanding fishing activity due to the depletion of fishery resources and marine environments. The design results are implemented to verify the operability of the system by separating the communication success rate of SKT and private LoRa networks and verifying the control function of each control system through the collected location information, respectively.

Location-based smart hard hat for deforestation workers (산림 벌목 작업자간 측위 기반 스마트 안전모)

  • Park, Changsu;Kang, Yunhee;Kim, Yuri;Kim, Jilrea;Park, Subin;Kang, Myungju
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.3-10
    • /
    • 2022
  • In high-risk workplaces where communication is not possible, such as deforestation, it is necessary to use equipment that monitors the worker's situation in real time and obtains information according to the worker's location in case of an emergency. This paper analyzes the development and demonstration experiments of smart hard hats for deforestation workers to maintain a safe working environment. The developed smart helmet identifies the location of the worker based on the UWB signal for location estimation, and it is necessary to keep the distance between the workers not too close. UWB, Gyro, and LoRa are used to communicate even in the communication shadow area. It is used to provide a safe working environment such as improved construction to reduce worker risks and risks in forest working environments.

Design of the Environmental Data Monitoring and Prediction System for the Fish Farms (양식장 환경 데이터 모니터링 및 예측 시스템의 설계)

  • Rijayanti, Rita;Kadam, Ashwini;Wahyutama, Aria B.;Lee, Bonyeong;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.178-180
    • /
    • 2021
  • In this paper, we design a system to monitor environmental data in fish farms in real-time and provide machine learning-based prediction services to prevent damage on fish farms caused by changes in the sea environment. The proposed system will install an IoT device module consisting of sensors that can measure hydrogen concentration, salinity, dissolved oxygen, and water temperature, which can be transferred to Cloud DB using LTE or LoRa communication technology and then monitor the real-time condition through a web or mobile application. In addition, it has a function to prepare for changes within the environment of fish farms by applying machine learning-based prediction technology using collected data.

  • PDF

Performance Evaluation of Low Power Communication Techniques Coverage for Internet of Things (IoT를 위한 저전력 통신 기술의 성능 평가)

  • Yoon, JeongHyeon;Kim, Seungku
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1211-1223
    • /
    • 2021
  • Internet of Things(IoT) services have increased the demand for connectivity among electronics devices. As a result, various types of novel wireless communication technologies have been standardized and developed. In this paper, we evaluate the performance of low power wireless communication technologies such as Bluetooth, IEEE 802.15.4, DASH 7, IEEE 802.15.4g, LoRa, and SigFox in various environments. This is the first experiment evaluating various low power wireless communication technologies in real testbed. We expect that the evaluation results will be useful data to other researchers in applying the IoT technology in the future.

Design of Integrated Safery System for Sealed Places (밀폐된 공간을 위한 통합안전시스템의 설계)

  • Jeong, Min-Seung;Lee, Chang-Shin;Cho, Woo-Hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.97-102
    • /
    • 2019
  • Disaster accidents at industrial sites have been increasing every year. In shipyards there are countless enclosed spaces causing issues like harmful-toxic gases stuck in those sealed areas. And due to such special and complicated structures of the working places with many layers of walls separating each other, there exist more issues of communication with workers trapped inside when accidents happen. Under this circumstance there must be a huge difficulty to evacuate or rescue the workers in case of any disaster. Therefore, in this paper, We would like to introduce the "integrated safety system" to more effectively deal with the problems and prevent such disasters in tough working environments. The suggested integrated safety system can prevent accidents in advance because it can control the data on the location of the workers in real time and the numerical values such as gas, oxygen, and carbon dioxide generated in the workplace in real time.

Development of Wireless Communication Educational Equipment for Internet of Things (IoT) (사물인터넷(IoT)을 위한 무선통신 교육장비 개발)

  • Kim, Han-jong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.321-326
    • /
    • 2021
  • Wireless communication is a core technology constituting the Internet of Things (IoT), but there is no suitable educational equipment to learn various wireless communication technologies used in the Internet of Things through practice. This paper deals with the development of advanced education and training equipment that can perform various IoT wireless communication practices. It uses an Arduino mega board as a device to control various sensors. As wireless network technologies to send and receive the sensing date wirelessly, it makes use of RFID/NFC and Bluetooth among WPAN technologies, WiFi among WLAN technologies and LoRa and 2.4GHz wireless transceiver among WWAN technologies. In addition, GPS, infrared communication, I2C communication, and SPI communication are organized so that various IoT wireless communication technologies can be learned through practice. In addition, since the educational equipment developed in this paper is equipped with two devices, it is designed to perform transmission and reception experiments for wireless network technology within the equipment.

System Implementation for Dew Condensation Prevention of Distributing Boards based on the Dew Point (이슬 결로점 기반 수배전반 결로 방지 장치 제작)

  • Kim, Tae-Myoung;Jee, Suk-Kun;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.645-650
    • /
    • 2018
  • IT-based automatic controller that control the temperature and humidity to prevent dew condensation of distributing board was designed and implemented in this paper. The dew condensation temperature was deduced from room temperature and humidity of distributing board. Based on the comparisons between the deduced dew condensation temperature and the temperature of surface condensation, the facilities that can prevent the condensation was implemented to be operated in due order. Also, the remote monitoring module to monitor operation status of controller was implemented using LoRa technique. The performances for controller operation and data transmission were validated from the transmission and operation test for dew condensation prevention. The controller can be put to good use at the facilities that requires the condensation prevention.

Implementation of Monitoring System for Smart Factory (스마트 팩토리를 위한 모니터링 시스템 구현)

  • Yoon, Jae-Hyeon;Jung, Jong-Mun;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.485-489
    • /
    • 2018
  • For the construction of smart factory that are part of the Fourth Industrial Revolution, data from the production environments and production machines should be collected, analyzed, and feedback should be given to predict when failures take place or parts should be replaced. For this purpose, a system that monitors the production environments and the status of the production machines are required. In this paper, the monitoring system for mobile devices and PC is implemented by collecting environmental data from production sites and sensor data of production machine using LoRa, a low-power wireless communication technology. On the mobile devices, production environments and vibration data can be displayed in real time. In PC monitoring program, sensor data can be displayed graphically to check standard deviation and data variation. The implemented system is used to collect data such as temperature, humidity, and atmospheric pressure of the production environment, and vibration data of production machines.

One-stop Platform for Verification of ICT-based environmental monitoring sensor data (ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

공공안전을 위한 스마트폰 기반 실종자 탐색 시스템

  • Pyeon, Gi-Hyeon
    • Information and Communications Magazine
    • /
    • v.34 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • 본고에서는 사물 인터넷 기술을 기반으로 한 실종자 탐색 기술과 서비스의 현황을 살펴보고 스마트폰 기반 실종자 탐색 서비스의 필요성과 시스템 구성 및 구현 방안에 대해 살펴 본다. 이 서비스는 실종자가 소지한 발신기 신호를 인지하는 수신 인프라의 종류에 따라 실종자 탐지 서비스의 비용, 실효성 등에 큰 영향을 받는다. 수신 인프라로 이동통신망, LoRa 망, 블루투스 망, 그리고 스마트폰을 사용하는 각 방안의 구조와 장단점을 살펴 본다.