• Title/Summary/Keyword: LoRa(Long Range)

Search Result 51, Processing Time 0.03 seconds

Implementation of Automatic Identification Monitoring System for Fishing Gears based on Wireless Communication Network and Establishment of Test Environment (무선통신망 기반 어구자동식별 모니터링 시스템 구현 및 시험환경 구축)

  • Joung, JooMyeong;Park, HyeJung;Kim, MinSeok;Kwak, Myoung-Shin;Seon, Hwi-Joon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In order to prevent illegal fishing and reduce lost fishing gear, it is necessary to develop a constant and continuous fishing gear monitoring system in the marine environment. In this paper, we design a long-term operational, reliable system model with communication coverage of more than 25Km considering the reality of gradually expanding fishing activity due to the depletion of fishery resources and marine environments. The design results are implemented to verify the operability of the system by separating the communication success rate of SKT and private LoRa networks and verifying the control function of each control system through the collected location information, respectively.

A Study on IoT/ICT Convergence Smart Safety Management System for Safety of High Risk Workers (고위험 직업군의 안전을 위한 IoT/ICT융합 스마트 안전관리 시스템에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik;Moon, Byungmoo;Oh, Seyong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Purpose: This study aims at developing and implementing Smart Safety Management System based on IoT/ICT Convergence for safety of high-risk groups working at disaster or industrial field. Its functions are as follows. Method: We will develop three devices for keeping the safety of high-risk jobs: Sensor of inactivity, Lora based Refitting technology for communication between high-risk workers, and Lora Gateway for monitoring entire situations. Then we will test three devices in respect of their functions, and propose their applicabilities in the field. Results: The system can send and receive safety tags and danger signals by which sensor technology can detect dangerous state of workers. And its command terminal was developed by low-power wireless communication technology and LoRa Gateway, which can fulfill the lifting functions between safety tags. And, furthermore, the command terminal can monitor dangerous situations of disaster sites in real time and can perform the preemptive rescues. Conclusion: This study proves the functional efficacy of Smart Safety Management System for worker safety in various high-risk occupational groups, and also suggests ways to secure worker safety in disaster area and various high risk industrial sites.

Study of IoT Module Package Design Optimization for Drop Testing by Drone (IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구)

  • Jo, Eunsol;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.63-67
    • /
    • 2021
  • In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.

Trend and Comparative Analysis of LoRa Technology for Efficient Sensing (효율적인 센싱을 위한 LoRa 기술 동향 및 비교분석)

  • Seo, Eui-seong;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.52-54
    • /
    • 2018
  • Recently, there is a growing interest in the 4th revolution called 'fusion and connection', and 'high connectivity society' is in sight. As a result, interest in the Internet of things has reached a record high, and it is not limited to automation and connected cars. Therefore, the Internet of things is expected to play an important role in building ecosystem of next generation mobile communication service. So, in this paper, we will introduce what kind of mobile communication is suitable for internet of things and the technology trend of internet communication for Internet of things.

  • PDF

Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator (엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템)

  • Min-ho Lee;Kun-woo Na;Seungoh Han
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

Long range-based low-power wireless sensor node

  • Komal Devi;Rita Mahajan;Deepak Bagai
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.570-580
    • /
    • 2023
  • Sensor nodes are the most significant part of a wireless sensor network that offers a powerful combination of sensing, processing, and communication. One major challenge while designing a sensor node is power consumption, as sensor nodes are generally battery-operated. In this study, we proposed the design of a low-power, long range-based wireless sensor node with flexibility, a compact size, and energy efficiency. Furthermore, we improved power performance by adopting an efficient hardware design and proper component selection. The Nano Power Timer Integrated Circuit is used for power management, as it consumes nanoamps of current, resulting in improved battery life. The proposed design achieves an off-time current of 38.17309 nA, which is tiny compared with the design discussed in the existing literature. Battery life is estimated for spreading factors (SFs), ranging from SF7 to SF12. The achieved battery life is 2.54 years for SF12 and 3.94 years for SF7. We present the analysis of current consumption and battery life. Sensor data, received signal strength indicator, and signal-to-noise ratio are visualized using the ThingSpeak network.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

DoS Attack Control Design of IoT System for 5G Era

  • Rim, Kwangcheol;Lim, Dongho
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • The Internet of Things (IoT) is a form of the emerging 4th industry in the 5G era. IoT is expected to develop naturally in our daily life in the 5G era in which high-speed communication will be completed. Along with the rise of IoT, concerns about security and malicious attacks are also increasing. This paper examines DoS attacks, which are one of the representative security threats of IoT and proposes a local detection and blocking system that are suitable for response to such attacks. First, systems of the LoRaWAN type, which are most actively researched in the IoT system field and DoS attacks that can occur in such systems were examined. Then, the inverse order tree algorithm using regional characteristics was designed as a cluster analysis form. Finally, a system capable of defending denial-of-service attacks in the 5G IoT system using local detection and blocking with the Euclidean distance was designed.

Smart Escape Support System for Passenger Ship : Active Dynamic Signage & Real-time Escape Routing (능동형 피난유도기기와 실시간 피난경로생성 기술을 적용한 여객선 스마트 인명대피 시스템)

  • Choi, James;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.79-85
    • /
    • 2017
  • It is critical that passengers should be given timely and correct escape or evacuation guidance from captain and crews when there are hazardous situations in a ship. Otherwise the consequences could be disastrous as "SEWOL Ferry" the South Korean passenger ship which sank in southern coastal area on 16th April 2014. Due to the captain's delayed evacuation decision and lack of sufficient number of crews to guide passengers' evacuation, the accident recorded many casualties, most of whom were high school students (302 passengers sank down with the ship while 172 rescued). Building a passenger ship with well-designed physical escape routes is one thing and guiding passengers to those escape routes in real disaster situation is another. Passengers get panic and move to a wrong direction, bottleneck makes situation worse, and even crews get panic also - passive static escape route signage and small number of trained crews might not be enough to take care of them. SESS (Smart Escape Support System) is being developed sponsored by South Korea Ministry of Ocean and Fisheries starting from 2016 with 4 years of roadmap. SESS comprises multiple active dynamic signage devices which communicate with real-time escape routing server software via LoRa (Long Range) proprietary wireless network.

  • PDF