• Title/Summary/Keyword: Livestock odor

Search Result 91, Processing Time 0.021 seconds

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Effects of the Feed and Probiotic Feeding on the Improvement of Hoggery Environment and the Productivity of Swine (사료 및 보조사료로서의 생균제 급여에 따른 돈사 환경개선과 돼지 생산성에 미치는 영향)

  • Lee, Enu-Young;Lim, Joung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.200-209
    • /
    • 2011
  • Animals produce important co-products such as meat, milk, and egg. Higher consumption and urbanization asked for more animal products and the demand was so strong that lager livestocks are now being raised densely in small farm. Large production of excreta and maldor is an inevitable consequence of condensed breeding. If this malodor couldn't be controlled, it could be chief obstacle to development of both livestock industry and environment of future. Major odor produced from livestock environments could be subdivided into four major sections: volatile fatty acids, ammonia and volatile amine, indole and phenols, and sulfur compounds. More than half of nitrogen excreted urea, so low protein feeding, synthetic amino acid feeding and supplementing with digestive enzyme, microbial agents and/or probiotics are methods for reducing nitrogen excretion. A lot of studies about feeding and probiotics, co-feed have been researched to improve environment and/or productivity in livestock industry.

Growth Media Conditions for Large-Scale Fermentation of Bacillus subtilis FWC1, B. amyloliquefaciens NAAS1, and Pichia farinosa NAAS2 (Bacillus subtilis FWC1, B. amyloliquefaciens NAAS1 및 Pichia farinosa NAAS2의 산업적 생산을 위한 배양 조건)

  • Yoo, Heeseop;Yoon, Yonghee;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2021
  • This study analyzed and compared growth characteristics under large-scale fermentation at 35℃ of three microorganisms with the ability to reduce odor-producing substances in livestock. The three microorganisms (Bacillus subtilis FWC1, Bacillus amyloliquefaciens NAAS1, and Pichia farinosa NAAS2) evaluated in this study have been proven effective in reducing odor-inducing substances. Bacillus subtilis FWC1 exhibited the highest viable cell count when using 2% maltodextrin as carbon source, 0.05% soy-peptone as nitrogen source, and 0.3% yeast extract. The optimum media composition for B. amyloliquefaciens NAAS1 was 1.2% modified-starch with 0.8% yeast extract. The spore formation rate in the mass production of the Bacillus strains was over 90%, indicating that optimal growth medium compositions have been identified. In the case of P. farinosa NAAS2, our optimized growth medium [2% (w/v) glucose and 1% (w/v) yeast extract] improved biomass production.

Investigation on Optimal Aeration Rate for Minimizing Odor Emission during Composting of Poultry Manure with Sawdust (계분톱밥 퇴비화시 악취발생의 최소화를 위한 적정 공기주입을 구명)

  • Kang, Hang-Won;Park, Hyang-Mee;Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Ui-Gum;Lee, Dong-Chang;Moon, Huhn-Pal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.225-231
    • /
    • 2001
  • This study was conducted to find out the optimal aeration rates for minimizing odor emission and for increasing biological activities during composting of livestock manure in the enclosed bench-scale reactor system. It was treated with the mixture of poultry manure and sawdust controlled the initial water content of 60%, then aerated continuously at four different aeration rates (0.1, 0.2, 0.4 and 0.6 L/min/kg dry-solids). The average emitted concentration of ammonia in 0.6 L/min/kg dry-solids during composting reached the level of 40% in comparison with that of 0.2 L/min/kg dry-solids. In cases of sulfur compounds such as hydrogen sulfide, methylmercaptan and ethylmercaptan, their concentrations decreased with increasing aeration rates and the emission time was shortened. But they didn't detect in the treatment of 0.6 L/min/kg dry-solids. The biological activity for composting showed a trend of increasing as aeration rates increased. The treatment of 0.6 L/min/kg dry-solids gave the highest biological activity and the best compost quality.

  • PDF

Odor Reduction of Pig Wastewater Using Magnesia (in-situ test) (마그네시아를 이용한 돈분 폐수의 악취 저감(현장 시험))

  • Bae, Su Ho;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • In this study, we tried to obtain the optimal conditions to reduce odors generated from pig wastewater using magnesia (MgO) through in-situ test after producing a reactor for removing odors. For this purpose, the filling amount of magnesia, the injection amount of pig wastewater, the aeration method, the aeration amount and the aeration time were considered. The field experiment was conducted at Cheongwoon Livestock Farm, which has a pig wastewater reservoir. As the amount of magnesia added to the weight of wastewater (500 kg) increases, the amount of ammonia (NH3) and hydrogen sulfide (H2S) generated tended to gradually decrease. As a result of the test, ammonia and hydrogen sulfide in the pig wastewater decreased up to 65% and 77%, respectively, for 2 days aeration after 0.8% of magnesia was added to the reaction tank. The initial pH of the pig wastewater in the reactor was 8.2, and the pH was found to be 9.2 when magnesia was added up to 0.8%. In the light of this trend, it can be known that magnesia gradually increases the pH in the pig wastewater and makes it weakly alkaline. As the pH increases, part of the ammonia gas present in the pig wastewater vaporizes into the air and the remaining part is removed by precipitation after chemical bonding with dissolved magnesium ions and phosphate ions. In order to remove the odor of pig wastewater and turn it into compost, most of the existing livestock farms go through a six-month aeration process using microorganisms. In contrast, the current study proved the effect of removing odors from pig wastewater within 2 days through chemical reactions that do not affect microbial activity.

Effect of dietary supplementation of Bacillus subtilis TLRI 211-1 on laying performance, egg quality and blood characteristics of Leghorn layers

  • Ming-Yang Tsai;Bor-Ling Shih;Ren-Bao Liaw;Wen-Tsen Chen;Tsung-Yu Lee;Hsi-Wen Hung;Kuo-Hsiang Hung;Yih-Fwu Lin
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.609-618
    • /
    • 2023
  • Objective: TLRI 211-1 is a novel Bacillus subtilis strain. This experiment was to investigate dietary supplementation of TLRI 211-1 on laying performance, egg quality and blood characteristics of layers. Methods: One hundred and twenty 65-wk-old Leghorn layers were divided into four treatment groups for 8 weeks experiment. Each treatment had three replicates. The basal diet was formulated as control group with crude protein 17% and metabolizable energy 2,850 kcal/kg and supplemented with TLRI 211-1 0.1%, 0.3%, and commercial Bacillus amyloliquefaciens 0.1% as treatment 2, 3 and 4 groups, respectively. Both TLRI 211-1 and commercial Bacillus amyloliquefaciens were adjusted to contain 1×109 colony-forming unit (CFU)/mL (g), hence the 0.1% supplemental level was 1×109 CFU/kg. Results: The results showed that TLRI 211-1 0.3% and commercial B. amyloliquefaciens groups had higher weight gain than the other groups; TLRI 211-1 0.1% group had better feed to eggs conversion ratio than the control and commercial B. amyloliquefaciens groups (p<0.05). Bacillus subtilis supplementation increased yolk weight (p<0.05). In egg quality during storage, TLRI 211-1 0.1% had higher breaking strength than the control group at the second week of storage (p<0.05). At the third week of storage, TLRI 211-1 0.3% had higher Haugh unit (p<0.05). Hens fed diets supplemented with TLRI 211-1 0.3% significantly decreased blood triglyceride levels and increased blood calcium levels (p<0.05). TLRI 211-1 0.3% group had lower H2S (p<0.05) and hence had less unpleasant odor in excreta of hens. Conclusion: In conclusion, supplementation with 0.1% TLRI 211-1 can significantly improve feed to eggs conversion ratio. TLRI 211-1 supplementation also can maintain eggs at their optimum quality level during storage. The study showed that B. subtilis TLRI 211-1 can be used as feed additives for improving egg production performance and egg quality.

Effect of Drying Methods on the Field Drying Rate and Quality of Alfalfa and Spring Oats Hay (건조방법별 알팔파와 봄 연맥의 건초조제 효과)

  • Seo, Sung;Kim, Jong-Geun;Chung, Eui-Soo;Lee, Jong-Kyong;Kim, Won-Ho;Shin, Dong-Eun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • A field experiment was carried out to determine the effects of chemical/mechanical treatments at mowing on the field drying rate and hay quality of alfalfa(Medicago sativa L., cv. Vernal) and spring oats(Avena satvia L., cv. Swan). The chemical drying agent of 2% $K_2CO_3$, mechanical mower conditioning, and no treatment(control) were treated for hastening hay-making in the spring of 1997. The forages were harvested at early bloom stage in alfalfa and heading stage in oats. After field dry, square bales were made by hay baler, and the dry matter(DM) loss, visual estimation and nutritive value of hay were evaluated after storing two months. The field drying rates of alfalfa and oats were high at mechanical treatment, but the drying effectiveness of chemical agents alone was very low. With mower conditioning, the duration of field dry was shortened by 1 day compared with control. therefore, mower conditioning enhance the field drying rate of alfalfa and oats. The DM loss of alfalfa and oats hay was reduced by mechanical treatment, but the efficiency by chemical alone was low. The visual score(leafiness, green color, odor and softness) of hay at mechanical treatment was slightly higher than that of chemical and control. The nutritive value(ADF, NDF, in vitro digestibility, and relative feed value) of hay was also high with treatment of mechanical, but those of chemical alone were similar compared with control. The nutritive value of hay after two months in both alfalfa and oats was decreased when compared with at harvest.

  • PDF

Decomposition of odor using atmospheric-pressure plasma (플라즈마를 이용한 악취물질 분해 특성)

  • Kang, Seok-Won;Lee, Jae-Sik;Lee, Kang-San;Lim, Hee-Ah;Kim, Ji-Seong;Lee, Jeong-Dae;Park, Wol-Su;Park, Young-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.708-718
    • /
    • 2020
  • Offensive odor is recognized as a social environmental problem due to its olfactory effects. Ammonia(NH3), hydrogen sulfide(H2S) and benzene(C6H6) are produced from various petrochemical plants, public sewage treatment plants, public livestock wastes, and food waste disposal facilities in large quantities. Therefore efficient decomposition of offensive odor is needed. In this study, the removal efficiency of atmospheric-pressure plasma operating at an ambient condition was investigated by evaluating the concentrations at upflow and downflow between the plasma reactor. The decomposition of offensive odor using plasma is based on the mechanism of photochemical oxidation of offensive odor using free radical and ozone(O3) generated when discharging plasma, which enables the decomposition of offensive odor at ordinary temperature and has the advantage of no secondary pollutants. As a result, all three odor substances were completely decontaminated within 1 minute as soon as discharging the plasma up to 500 W. This result confirms that high concentration odors or mixed odor materials can be reduced using atmospheric-pressure plasma.

Effect of Corynebacterium glutamicum and Bacillus licheniformis on livestock material burial treatment (매몰된 가축 사체의 부패 촉진 및 토양 비옥화를 위한 Corynebacterium glutamicum과 Bacillus licheniformis 처리 효과)

  • Shin, You-Jeong;Heo, Geon-Young;Kim, Ju-Hyung;Kim, Bit-Na;Min, Jiho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • Foot and mouth disease (FMD) is highly infectious disease of cloven-hoofed animals, particularly problematic in cattle, sheep, pigs and goats for economic reasons. Last FMD outbreak in February, 2017 caused tremendous social and economical impacts. The Korean FMD policy aims to vaccinate intact animals and euthanize and bury infected animals to prevent the disease spread. However, there was a problem that the buried livestock did not decompose after several years. Therefore, the study was purposed to investigate the effect of Corynebacterium glutamicum and Bacillus licheniformis on the degradation of buried cow carcasses and on the soil condition; such as temperature, decomposition course of carcasses, composition of amino acids in the soil around carcasses, and plant root elongation to measure soil conditions. As a result, the composition of amino acids in the soil treated with C. glutamicum and B. licheniformis was generally higher than those in the untreated soil. Plant roots in soil treated with C. glutamicum and B. licheniformis grew longer than in non-treated soil. The results suggested that the toxic effect on a grave land buried with FMD infected livestock is reduced when treated with C. glutamicum and B. licheniformis in regard of odor reduction, promoted decaying process, and soil fertilization.

Content Analysis of Main National Environmental Dispute Cases from Five Recent Years (최근 5년간 주요 중앙환경분쟁조정 사건의 내용 분석)

  • Park, Jeong-Ho;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.989-998
    • /
    • 2016
  • In this study, we analyzed the content and compensation factors of 337 cases of national environmental disputes from five recent years (2000~2014). Causes of damage were noise-vibration in 234 cases (69%), sunlight in 48 cases (14%), air pollution in 19 cases (6%), water pollution in 15 cases (4%), odor in 13 cases (4%), and others factors in 8 cases (3%). Sources of damage were construction in 224 cases (66%), structures in 36 cases (11%), vehicle on road in 31 cases (9%), industry in 18 cases (5%), environmental facility in 11 cases (3%), livestock facility in 6 cases (2%), and other sources in 11 cases (3%). From the results of logistic regression analysis, important factors associated with compensation were found to be damage amount, damage distance, zoning districts, source, and administrative disposition.