• Title/Summary/Keyword: Livestock Sludge

Search Result 89, Processing Time 0.019 seconds

The Proposal for High-concentrated Biomass Utilization System in Jeju (제주지역 고농도 biomass 활용 시스템 제안)

  • Kang, Jin-Young;Lee, Su-Mi;Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.51-58
    • /
    • 2009
  • In this paper checked up biomass which occurs in the Jeju as are classified as organic waste for integrated management system for review and circulation of resources. Biomass which occurs in the Jeju was the 10,818 tons of sludge, 61,284 tons of food-waste, 1,519,000 tons of livestock. Sludge is treated marine discharge, food-waste is treated regeneration and livestock is treated in the form of recycling. How to establish "System used by mechanism of recycling management on biomass resources" to introduce biomass town created by Hita-city, Oita-ken in Japan. Also there established a model system to building for recycling management of biomass and then checked up the economics. According to the report, it has the difference in facilities, but it will switch to a surplus in 4 years, therefore it was confirmed that the economy. To be considered priority most livestock in "System used by mechanism of recycling management on biomass resources" in Jeju. So it is introduced the urgent problem and the problem awaiting solution on treating livestock in this study.

Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic matter of Livestock Wastewater (마이크로버블과 촉매 적용에 따른 가축분뇨의 슬러지와 유기오염물질 감량 효과)

  • Jang, Jae Kyung;Kim, Min Young;Sung, Je Hoon;Chang, In Seop;Kim, Tae Young;Kim, Hyun Woo;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.558-562
    • /
    • 2015
  • This study was tested to evaluate the effect of the six different combinations of microbubble, catalyst, and air as oxidant on the sludge and organic matter reduction. When all of microbubbles and catalyst, and an oxidizing agent (under Conditions 1) such as air were used, the sludge was removed more than 99%, and TCOD and SCOD removal was 58% and 13%, respectively. This result was the highest value of six conditions. In the following order, the sludge reduction of the microbubbles with air (Condition 2) and catalyst with air (condition 4) was 95% and 93.1%, respectively. TCOD removal was found to be each 53% and 47%. When the microbubbles were used with oxidant like air, the removal of sludge and organic matter was high. All of these values were higher than that of using only microbubbles and catalyst without air. In the microbubbles and catalyst react under air supply condition, OH-radicals were generated in the reaction process. These OH-radicals in the reaction process decomposed the pollutants by the strong oxidizing power. In all conditions with air, the sludge reduction was high removal rate more than 93% and TCOD removal was over 47%.

Solubilization of Dairy Sludge using Ultrasonic Pretreatment (초음파를 이용한 유가공 슬러지의 가용화)

  • Moon, Sang Jae;Jeon, Byeong Cheol;Choi, Jin Taek;Nam, Se Yong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.244-248
    • /
    • 2017
  • The effects of ultrasonic (1.2~1.7 kJ/g TS) pretreatment on the solubilization of dairy and livestock sludge were separately evaluated to investigate the possibility of recycling dairy sludge as a potential source of organic carbon. Compared to other industrial wastewater and sewage sludge, dairy sludge has higher organic matter content and no toxic materials. The solubilization rates of dairy and livestock sludge, at a specific energy input of 1.7 kJ/g TS, were 14.5% and 10.6%, respectively. After the 90-minute ultrasonic treatment, the soluble COD (chemical oxygen demand) increased about 7.1 times that of the initial SCOD, at an increase rate of $0.022m^{-1}$. In comparison, the increase in soluble nitrogen, which was ~3.4 times that of the initial soluble nitrogen concentration, was much smaller than the increase in SCOD; thus, the C/N ratio increased from 4.0 to 8.7.

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Screening and Isolation of Ammonia Removal Microorganism for the Improvement of Livestock Environment (축산환경 개선을 위한 암모니아 제거 미생물의 탐색 및 분리)

  • Lee, So-Jin;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.408-412
    • /
    • 2009
  • A study on the screening and isolation of microorganism was performed for the removal of main malodor, such as ammonia, produced from the livestock farm. The main malodor components in livestock farm are ammonia, volatile fatty acids, sulfur compounds and trimethylamine. Damages to man and livestock were originated from malodors mainly due to ammonia, and thus ammonia reduction experiments were performed. Sludge of sewage treatment plant was inoculated in the sesame dregs culture, from which ammonia gas was produced. An aerobically grown, pure cultured isolated from the 10th enrichment culture was analyzed by 16S rRNA sequencing and identified as Alcaligenes sp. NS-1. This strain NS-1 precultured in the sesame dregs was found to remove ammonia gas with an efficiency of approximately 99-100% at an average concentration of 40 ppmv of ammonia gas. When the strain NS-1 sprayed to pig excrements, the removal efficiency at an average concentration of 100 ppmv of ammonia was approximately 60% after 16 hr.

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku;Nonaka, Jun;Otawa, Kenichi;Kitazume, Osamu;Asano, Ryoki;Sasaki, Takako;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

Convergence Study on Organic Sludge Treatment System (유기성 슬러지 처리 시스템에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.213-217
    • /
    • 2020
  • An eco-friendly water purifier was developed using natural minerals, plants, and sludge from water purification plants. A wastewater complex treatment system using this water purification agent was developed. The wastewater complex treatment system goes through the process of inflow of contaminated water, input of water purification agent, operation of a pressurized flotation device, sludge flotation, sludge collection and treatment water discharge. This device was applied to the removal of green algae in livestock desorption liquid, broiler washing water, factory wastewater, sewage treatment plant and pond to obtain excellent removal rate. The use of natural water purification agents for organic waste purification has not been investigated.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus in Livestock Treatment System Using Constructed Wetlands (인공습지 축산폐수처리시스템에서 질소 및 인 처리효율 향상 방안)

  • Seo, Dong-Cheol;Park, Jong-Hwan;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Kim, Hyun-Ook;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.434-441
    • /
    • 2011
  • To improve T-N and T-P removal efficiencies, removal efficiencies of pollutants in full-scale livestock wastewater treatment plant by natural purification method with water plant filtration and activated sludge beds were investigated under different re-injection rates and injection methods of livestock wastewater. The removal rates of COD, SS, T-N, and T-P in effluent in full-scale livestock wastewater treatment plant were in the order of 30% < 70% ${\leq}$ 100 % at different re-injection rates. The removal rates of pollutants in effluent in full-scale livestock wastewater treatment plant were higher as re-injection rate of livestock wastewater increased. Removal rates of COD, SS, T-N, and T-P by continuous injection were slightly higher than those by intermittent injection method in full-scale livestock wastewater treatment plant. Removal rates of COD, SS, T-N, and T-P by continuous injection method in full-scale livestock wastewater treatment plant with water plant filtration and activated sludge beds were 99.5, 99.8, 99.0 and 99.8%, respectively.

Application Effects of Organic Fertilizer Utilizing Livestock Horn Meal as Domestic Organic Resource on the Growth and Crop Yields (국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Lee, Jin-Gu;Yoon, Seuong-Hwan;Hong, Sang Eun;Shin, Ki Hae;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • Objective of this study was to develop an organic fertilizer utilizing domestic livestock horn meal and to investigate the application effect of rice and eggplant. The possibility of utilization of livestock horn meal as an organic resource to replace imported expeller cake fertilizer was examined. In order to select domestic organic resources with high nitrogen content, 8 kinds of organic matter such as chicken manure, fish meal, soybean meal, sesame meal, perilla meal, blood meal, livestock horn meal, and beer sludge were analyzed and organic resources with high nitrogen content were selected. In addition, the conditions for the production of organic fertilizers that can be used in organic agriculture were established by mixing of the rice husk biochar and the rice bran as the supplements with the raw materials for mixing ratios. The content of total nitrogen (T-N) in the livestock horn meal was 12.0 %, which was the next low in 13.5 % blood meal. The content of total nitrogen was 5.9 ~ 7.9 % in fish meal and oil cakes. Total nitrogen content of non-antibiotic chicken manure for organic farming was 3 % and nitrogen content in beer sludge was 3.5 %. Organic fertilizer was produced by using biochar, rice bran as a main ingredient of non-antibiotic chicken manure, livestock horn meal and beer sludge. Compared to nitrogen content (4.0 to 4.2 %) of imported expeller cake fertilizer (ECF), the nitrogen content of organic fertilizer utilizing domestic livestock horn meal is as high as 7.5 %. The developed organic fertilizer is met as Zn 400 mg/kg, Cu 120 mg/kg the quality of organic agricultural materials such as or less. To investigate the effect of fertilizer application on the crops, prototypes of developed organic fertilizer were used for the experiment under selected conditions. As a result of application the developed organic livestock horn meal fertilizer (LHMF) for cultivation of the rice and eggplant, the application quantity of the developed organic LHMF 100 % was decreased by 40 % compared to that of the mixed expeller cake fertilizer (MECF). The application of LHMF, which refers to the application rate corresponding to the nitrogen fertilization recommended by the soil test, was reduced by 40% compared to the application rate of MECF, but the same results were obtained in crop growth and yield. The selection of a new high concentration nitrogen source utilizing domestic organic resources and the development of organic fertilizer is the starting point of the research for substitution of imported ECF using domestic local resources at the present time that the spread of eco-friendly agriculture is becoming increasingly important. If it is expanded in the future, it is expected to contribute to the stable production of eco-friendly agricultural products.