• Title/Summary/Keyword: Livestock Industry

Search Result 503, Processing Time 0.023 seconds

Applying a smart livestock system as a development strategy for the animal life industry in the future: A review (미래 동물생명산업 발전전략으로써 스마트축산의 응용: 리뷰)

  • Park, Sang-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.241-262
    • /
    • 2021
  • This paper reviewed the necessity of a information and communication technology (ICT)-based smart livestock system as a development strategy for the animal life industry in the future. It also predicted the trends of livestock and animal food until 2050, 30 years later. Worldwide, livestock raising and consumption of animal food are rapidly changing in response to population growth, aging, reduction of agriculture population, urbanization, and income growth. Climate change can change the environment and livestock's productivity and reproductive efficiencies. Livestock production can lead to increased greenhouse gas emissions, land degradation, water pollution, animal welfare, and human health problems. To solve these issues, there is a need for a preemptive future response strategy to respond to climate change, improve productivity, animal welfare, and nutritional quality of animal foods, and prevent animal diseases using ICT-based smart livestock system fused with the 4th industrial revolution in various aspects of the animal life industry. The animal life industry of the future needs to integrate automation to improve sustainability and production efficiency. In the digital age, intelligent precision animal feeding with IoT (internet of things) and big data, ICT-based smart livestock system can collect, process, and analyze data from various sources in the animal life industry. It is composed of a digital system that can precisely remote control environmental parameters inside and outside the animal husbandry. The ICT-based smart livestock system can also be used for monitoring animal behavior and welfare, and feeding management of livestock using sensing technology for remote control through the Internet and mobile phones. It can be helpful in the collection, storage, retrieval, and dissemination of a wide range of information that farmers need. It can provide new information services to farmers.

An Overview of Meat Industry in Sri Lanka: A Comprehensive Review

  • Alahakoon, Amali U.;Jo, Cheorun;Jayasena, Dinesh D.
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Livestock is considered as one of the most important segments in agriculture since animal husbandry was practiced for centuries as a backyard system by rural families. Livestock plays as a powerful tool in rural development where meat industry contributes a dominant part. Meat and meat products become a vital component in the diet, which had been one of the main protein sources traditionally as well. The development in the livestock and meat industry of Sri Lanka basically depends upon religious, cultural, and economic factors. There is a growing demand for processed meat products in Sri Lankan urban culture and several large scale processors entered the business during the past few decades. The consumption of meat and meat products shows an upward trend in Sri Lanka during the last decade and is anticipated to increase further in future. The growth potential of the local meat industry is considerably high owing to the improvement of the market and consumer perception. The present status, trends, and future prospects for the Sri Lankan meat industry with respect to production, consumption, processing, marketing, and improvement are discussed in this review.

A Study on U-Livestock Integrated Service on Ubiquitous Technologies (유비쿼터스 기술을 활용한 축산부문 U-축산 융합서비스 도입연구)

  • Koo, J.H.;Jung, T.W.;Lee, S.R.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • The output of Korea's livestock industry represents about 40% of the total agricultural production, making it the most high value-added sector in the entire agricultural and forestry industry. However, the fatal epidemics such as foot-and-mouth disease and avian influenza spurs demands for the advanced management of livestock production with IT technologies. U-Livestock means the application of ubiquitous technologies to livestock production. In this study, U-Livestock service models are established on the basis of the life cycle of livestock by using local and overseas cases. The objectives, contents, and structures of service models are required to be designed in detail respectively. The integration of such service models is expected to he1p modernize the livestock industry and raise the productivity of sector.

Development of Smart Livestock Disease Control Strategies and Policy Priorities (스마트 가축방역 추진전략 및 정책 우선순위)

  • Lee, Jeongyoung;Ko, Sang Min;Kim, Meenjong;Ji, Yong Gu;Kim, Hoontae
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.109-126
    • /
    • 2018
  • With massive and dense production, the livestock industry is rapidly moving into a large-scale, capital-intensive industry especially in swine, poultry, and ducks. However, livestock epidemics can pose a serious threat to the livestock industry and the lives of the people. The government has established and operates the National Animal Protection and Prevention System (KAHIS) since 2013 in order to control the threat, in accordance with the five stages. The digitalized data and information are excellent in ease of management, but it is also pointed out that it is difficult to take countermeasures through linkage with the data in an emergency situation. Recently, the technology of the fourth industrial revolution such as Internet of Things (IoT), Big Data, Artificial intelligence (AI) has been rapidly implemented to the livestock industry, which makes smart livestock disease control system possible. Therefore, this study investigated the domestic and overseas cases which apply 4th Industrial Revolution technology in the industry, and derived 13 possible candidate tasks in the near future. In order to ascertain the priority of policy formulation, we surveyed the expert groups and examined the priority of each of the five stages of the prevention and the priority of each stage. The results of this study are expected to contribute to the establishment of policies for the advancement of smart livestock disease control research and livestock protection.

Trends in non- destructive analysis using near infrared spectroscopy in food industry (식품 산업에서의 근적외선 분광법을 이용한 비파괴 분석법 동향)

  • Park, Jong-Rak
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.2-22
    • /
    • 2022
  • Near-infrared spectroscopy (NIRS) is one of the representative non-destructive and eco-friendly analysis methods used for rapid analysis of various ingredients in the food industry. To develop analysis model with NIRS, Chemometrics are applied after pre-treatment of spectrum. Many studies have been reviewed on the analysis of general and functional components for agricultural and livestock products. In the case of livestock products, some studies have been conducted for on-line analysis. This study investigated results on various samples and component applying near-infrared spectroscopy. Furthermore, the results according to sample condition were compared. It was confirmed that NIRS is applied to various fields in the food industry.

Screening of Specific Genes Expressed in the Swine Tissues and Development of a Functional cDNA Chip

  • Kim, Chul Wook;Chang, Kyu Tae;Hong, Yeon Hee;Kwon, Eun Jung;Jung, Won Yong;Cho, Kwang Keun;Chung, Ki Hwa;Kim, Byeong Woo;Lee, Jung Gyu;Yeo, Jung-Sou;Kang, Yang Su;Joo, Young Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.933-941
    • /
    • 2005
  • To develop a functional cDNA chip, specific genes expressed in the tissues of swine Kagoshima Berkshire were screened. A total of 4,434 ESTs were obtained by constructing a cDNA library from total RNA isolated from the muscle and fat tissues, affirming their functions by investigating similarity of nucleotide sequences with the database at the NCBI. Among them, 1,230 ESTs were confirmed as novel genes, which, to date, have not been identified. Attaching the genes to a cDNA microarray slide revealed expression patterns of genes in muscle and fat according to the growth stages of swine. As specific genes expressed in the muscle tissues of swine with body weight of 30 kg, 60 genes including actin, myosin, tropomysin, transfer RNA-trp synthetase, Kel-like protein 23, KIAA0182 and COI, Foocen-m, etc were obtained. In addition, 18 novel genes were obtained. As specific genes expressed in fat tissues of swine with body weight of 30 kg, 47 genes including annexin II, Collagen, Fibronectin, Pleckstrin homology domain, serine protease, etc were obtained. 21 novel genes were also obtained. The genes specifically expressed in the muscle and fat tissues of swine affect contraction and relaxation of the muscle and the fat. However, studies on the expression mechanisms of the genes are insufficient. To reveal species of structural genes in swine muscle and fat tissue, interrelation studies in expression and function of genes by using the cDNA chip should be conducted.

cDNA Microarray Analysis of the Gene Expression Profile of Swine Muscle

  • Kim, Chul Wook;Chang, Kyu Tae;Hong, Yeon Hee;Jung, Won Yong;Kwon, Eun Jung;Cho, Kwang Keun;Chung, Ki Hwa;Kim, Byeong Woo;Lee, Jung Gyu;Yeo, Jung Sou;Kang, Yang Su;Joo, Young Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1080-1087
    • /
    • 2005
  • By screening specific genes related to the muscle growth of swine using cDNA microarray technology, a total of 5 novel genes (GF (growth factor) I, II, III, IV and V) were identified. Results of southern blotting to investigate the number of copies of these genes in the genome of swine indicated that GF I, GF III, and GF V existed as one copy and GF II, and GF IV existed as more than two copies. It was suggested that there are many isoforms of these genes in the genome of swine. Also, results of northern blotting to investigate whether these genes were expressed in grown muscle, using GF I, III, and V indicated that all the genes were much more expressed in the muscle of swine with body weight of 90 kg. Expression patterns of these genes in other organs, namely muscle and propagation and fat tissues, were investigated by extracting RNA from the tissues. These genes were not expressed in the propagation and fat tissues, but were expressed in the muscle tissue. To determine the mechanism of muscle growth, further studies should be preceded using the 3 specific genes related to muscle growth, that is GF I, III, and V.

The Impacts of Environmental Policy on Livestock Stocking and Location by Industry Size (환경정책이 축산업의 규모와 입지에 미친 파급효과 -축산농가 규모별 분석-)

  • Park, Dooho
    • Environmental and Resource Economics Review
    • /
    • v.15 no.1
    • /
    • pp.1-26
    • /
    • 2006
  • This paper explores the relatilonship between state level environmental regulations and stocking and location decisions in the U.S livestock and poultry industry (beef, chicken, dairy and hogs), Rather than conduct this analysis on a species by species basis, the overall size of the livestock industry(expressed in animal units) and the size of Industry found on large, medium and small operations by state (48) and over time (29 years), which is panel data analysis, Generally, regulations seem to be induced by the structural change of industry; when industry creates externalities, regulators try to address them with policy tools to internalize them, Written regulatory stringency may not effect behavioral change; rather the state's willingness to enforce regulations seems to have a measurable influence. However, in the presence of rapid structural change, industry location is affected by written regulatory stringency. Policy enforcement activity was shown to influence inventory decisions in general and larger operations were found to be more sensitive to willingness to enforce than smaller operations.

  • PDF

Differences in fine dust emissions based on bedding type and quantity in horse stables

  • Ji Hyun Yoo;Jong An Lee;Jae Young Choi;Sang Min Shin;Hyeon Ah Kim;Mi Young Won;Yong Jun Kang;Hee Chung Ji;In Cheol Cho;Jin Hyoung Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.917-925
    • /
    • 2023
  • Efforts for developing the domestic horse industry in South Korea are evident through the various national policies. Proper management of stables for ensuring the health of horses is essential to sustain the growing equine industry. This study aimed to measure the fine dust emissions in stables based on the type and quantity of bedding used for horses, for establishing guidelines pertaining to bedding use in stables. The stables accommodated 12 horses. Sawdust, wood shavings, wood pellet, and straw were chosen as treatments. Three different quantities (approximately 3, 6, and 9 cm in height) were applied for each type. Fine dust measurements were carried out at three time points, with each measuring period lasting for approximately three weeks. Measurements included PM2.5 and PM10 fine dust levels. The initial analysis revealed that, sawdust with 9 cm bedding had the highest dust levels; approximately 54.6 ㎍/m3, for PM2.5 and 95.3 ㎍/m3, for PM10. Sawdust bedding at the highest quantity (9 cm) exhibited significantly higher initial fine dust emissions. These findings suggest that bedding materials with smaller particle size, such as sawdust and wood shavings, tend to produce finer dust. Initially, the fine dust emissions decreased in all bedding types and quantities, possibly due to the increased moisture content of bedding owing to horse manure production. However, emissions increased subsequently due to ammonia production.