Browse > Article
http://dx.doi.org/10.23093/FSI.2022.55.1.2

Trends in non- destructive analysis using near infrared spectroscopy in food industry  

Park, Jong-Rak (Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry)
Publication Information
Food Science and Industry / v.55, no.1, 2022 , pp. 2-22 More about this Journal
Abstract
Near-infrared spectroscopy (NIRS) is one of the representative non-destructive and eco-friendly analysis methods used for rapid analysis of various ingredients in the food industry. To develop analysis model with NIRS, Chemometrics are applied after pre-treatment of spectrum. Many studies have been reviewed on the analysis of general and functional components for agricultural and livestock products. In the case of livestock products, some studies have been conducted for on-line analysis. This study investigated results on various samples and component applying near-infrared spectroscopy. Furthermore, the results according to sample condition were compared. It was confirmed that NIRS is applied to various fields in the food industry.
Keywords
near infrared spectroscopy; agriculture products; livestock product; Chemometrics; on-line analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 De Marchi, M., Penasa, M., Cecchinato, A., Bittante, G. (2013). The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts. Meat Science, 93(2), 329-335.   DOI
2 Dickens, J. E. (2010). Overview of process analysis and PAT. spectroscopic tools and implemetation strategies for the chemical and pharmaceutical industries. Process analytical technology: Spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries, 1-15.
3 Liao, Y.-T., Fan, Y.-X., Cheng, F. (2010). On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy. Meat Science, 86(4), 901-907.   DOI
4 Lucas, A., Andueza, D., Rock, E., Martin, B. (2008). Prediction of dry matter, fat, pH, vitamins, minerals, carotenoids, total antioxidant capacity, and color in fresh and freeze-dried cheeses by visible-near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 56(16), 6801-6808.   DOI
5 de Souza, A. M., Filgueiras, P. R., Coelho, M. R., Fontana, A., Winkler, T. C. B., Valderrama, P., Poppi, R. J. (2016). Validation of the near infrared spectroscopy method for determining soil organic carbon by employing a proficiency assay for fertility laboratories. Journal of Near Infrared Spectroscopy, 24(3), 293-303.   DOI
6 Guthrie, J., Greensill, C., Bowden, R., Walsh, K. (2004). Assessment of quality defects in macadamia kernels using NIR spectroscopy. Australian journal of agricultural research, 55(4), 471-476.   DOI
7 Melfsen, A., Hartung, E., Haeussermann, A. (2012). Accuracy of milk composition analysis with near infrared spectroscopy in diffuse reflection mode. Biosystems engineering, 112(3), 210-217.   DOI
8 De Marchi, M., Penasa, M., Battagin, M., Zanetti, E., Pulici, C., Cassandro, M. (2011). Feasibility of the direct application of near-infrared reflectance spectroscopy on intact chicken breasts to predict meat color and physical traits. Poultry Science, 90(7), 1594-1599.   DOI
9 Fragoso, S., Acena, L., Guasch, J., Busto, O., Mestres, M. (2011). Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening. Journal of Agricultural and Food Chemistry, 59(6), 2175-2183.   DOI
10 de Oliveira, G. A., de Castilhos, F., Renard, C. M.-G. C., Bureau, S. (2014). Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food research international, 60, 154-162.   DOI
11 Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest biology and technology, 46(2), 99-118.   DOI
12 Niu, X., Zhao, Z., Jia, K., Li, X. (2012). A feasibility study on quantitative analysis of glucose and fructose in lotus root powder by FT-NIR spectroscopy and chemometrics. Food Chemistry, 133(2), 592-597.   DOI
13 Ortiz-Somovilla, V., Espana-Espana, F., Gaitan-Jurado, A., Perez-Aparicio, J., De Pedro-Sanz, E. (2007). Proximate analysis of homogenized and minced mass of pork sausages by NIRS. Food Chemistry, 101(3), 1031-1040.   DOI
14 Park, J. R., Kang, H. H., Cho, J. K., Moon, K. D., Kim, Y. J. (2020). Application of non-destructive rapid determination of Piperine in Piper nigrum L.(black pepper) using NIR and multivariate statistical analysis: a promising quality control tool. Foods, 9(10), 1437.   DOI
15 Park, J. R., Kang, H. H., Cho, J. K., Moon, K. D., Kim, Y. J. (2020). Feasibility of rapid piperine quantification in whole and black pepper using near infrared spectroscopy and chemometrics. Journal of Food Science, 85(10), 3094-3101.   DOI
16 Pullanagari, R. R., Yule, I. J., Agnew, M. (2015). On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy. Meat Science, 100, 156-163.   DOI
17 Porep, J. U., Kammerer, D. R., Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science & Technology, 46(2), 211-230.   DOI
18 Schulz, H., Baranska, M., Quilitzsch, R., Schutze, W., Losing, G. (2005). Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods. Journal of Agricultural and Food Chemistry, 53(9), 3358-3363.   DOI
19 Rinnan, A., Van Den Berg, F., Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222.   DOI
20 Camacho, W., Valles-Lluch, A., Ribes-Greus, A., Karlsson, S. (2003). Determination of moisture content in nylon 6, 6 by near-infrared spectroscopy and chemometrics. Journal of applied polymer science, 87(13), 2165-2170.   DOI
21 Schulz, H., Drews, H.-H., Quilitzsch, R., Kruger, H. (1998). Application of near infrared spectroscopy for the quantification of quality parameters in selected vegetables and essential oil plants. Journal of Near Infrared Spectroscopy, 6(201), A125-A130.   DOI
22 Sirisomboon, P., Tanaka, M., Fujita, S., Kojima, T. (2007). Evaluation of pectin constituents of Japanese pear by near infrared spectroscopy. Journal of food engineering, 78(2), 701-707.   DOI
23 Valderrama, P., Braga, J. W. B., Poppi, R. J. (2007). Variable selection, outlier detection, and figures of merit estimation in a partial least-squares regression multivariate calibration model. A case study for the determination of quality parameters in the alcohol industry by near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 55(21), 8331-8338.   DOI
24 Wang, X., Huang, J., Fan, W., Lu, H. (2015). Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Analytical Methods, 7(2), 787-792.   DOI
25 Barlocco, N., Vadell, A., Ballesteros, F., Galietta, G., Cozzolino, D. (2006). Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Animal Science, 82(1), 111-116.   DOI
26 Mourot, B.-P., Gruffat, D., Durand, D., Chesneau, G., Mairesse, G., Andueza, D. (2015). Breeds and muscle types modulate performance of near-infrared reflectance spectroscopy to predict the fatty acid composition of bovine meat. Meat Science, 99, 104-112.   DOI
27 Prieto, N., Ross, D., Navajas, E., Richardson, R., Hyslop, J., Simm, G., Roehe, R. (2011). Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy. animal, 5(1), 155-165.   DOI
28 Wu, W., Walczak, B., Massart, D., Prebble, K., Last, I. (1995). Spectral transformation and wavelength selection in near-infrared spectra classification. Analytica chimica acta, 315(3), 243-255.   DOI
29 Barnes, R., Dhanoa, M. S., Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied spectroscopy, 43(5), 772-777.   DOI
30 Berhow, M. A., Singh, M., Bowman, M. J., Price, N. P., Vaughn, S. F., Liu, S. X. (2020). Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chemistry, 317, 126373.   DOI
31 Carlini, P., Massantini, R., Mencarelli, F. (2000). Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. Journal of Agricultural and Food Chemistry, 48(11), 5236-5242.   DOI
32 Cozzolino, D. (2009). Near infrared spectroscopy in natural products analysis. Planta medica, 75(07), 746-756.   DOI
33 Armstrong, P., Maghirang, E., Xie, F., Dowell, F. (2006). Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes. Applied Engineering in Agriculture, 22(3), 453-457.   DOI
34 De Marchi, M., Manuelian, C. L., Ton, S., Manfrin, D., Meneghesso, M., Cassandro, M., Penasa, M. (2017). Prediction of sodium content in commercial processed meat products using near infrared spectroscopy. Meat Science, 125, 61-65.   DOI
35 De Marchi, M., Riovanto, R., Penasa, M., Cassandro, M. (2012). At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy. Meat Science, 90(3), 653-657.   DOI
36 Guy, F., Prache, S., Thomas, A., Bauchart, D., Andueza, D. (2011). Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS). Food Chemistry, 127(3), 1280-1286.   DOI
37 Macho, S., Larrechi, M. (2002). Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain properties in the petrochemical industry. TrAC Trends in Analytical Chemistry, 21(12), 799-806.   DOI
38 Herrera, J., Guesalaga, A., Agosin, E. (2003). Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Measurement Science and Technology, 14(5), 689.   DOI
39 Kapper, C., Klont, R., Verdonk, J., Urlings, H. (2012). Prediction of pork quality with near infrared spectroscopy (NIRS): 1. Feasibility and robustness of NIRS measurements at laboratory scale. Meat Science, 91(3), 294-299.   DOI
40 Liu, C., Liu, W., Chen, W., Yang, J., Zheng, L. (2015). Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chemistry, 173, 482-488.   DOI
41 Magwaza, L. S., Naidoo, S. I. M., Laurie, S. M., Laing, M. D., Shimelis, H. (2016). Development of NIRS models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT-Food Science and Technology, 72, 63-70.   DOI
42 Schmutzler, M., Huck, C. W. (2016). Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: a quick and sensitive method for on-site analyses of apples. Food Control, 66, 27-37.   DOI
43 Shiroma, C., Rodriguez-Saona, L. (2009). Application of NIR and MIR spectroscopy in quality control of potato chips. Journal of Food Composition and Analysis, 22(6), 596-605.   DOI
44 Huck, C., Guggenbichler, W., Bonn, G. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Analytica chimica acta, 538(1-2), 195-203.   DOI
45 Cho, H.-S., Ryu, J.-H., Liu, J. J. (2011). Development of an On-line Measurement Method for Clean Biofuel Based on Near Infrared Spectroscopy and Chemometrics. Clean Technology, 17(3), 215-224.   DOI
46 Kim, Y. J., Lee, H. J., Shin, H. S., Shin, Y. (2014). Near-infrared reflectance spectroscopy as a rapid and non-destructive analysis tool for curcuminoids in turmeric. Phytochemical Analysis, 25(5), 445-452.   DOI
47 Riovanto, R., De Marchi, M., Cassandro, M., Penasa, M. (2012). Use of near infrared transmittance spectroscopy to predict fatty acid composition of chicken meat. Food Chemistry, 134(4), 2459-2464.   DOI
48 Salguero-Chaparro, L., Pena-Rodriguez, F. (2014). On-line versus off-line NIRS analysis of intact olives. LWT-Food Science and Technology, 56(2), 363-369.   DOI
49 Savitzky, A., Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639.   DOI
50 Jamrogiewicz, M. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology. Journal of pharmaceutical and biomedical analysis, 66, 1-10.   DOI
51 Correia, R. M., Tosato, F., Domingos, E., Rodrigues, R. R., Aquino, L. F. M., Filgueiras, P. R., Lacerda Jr, V., Romao, W. (2018). Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta, 176, 59-68.   DOI
52 Cozzolino, D., Murray, I. (2002). Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 10(1), 37-44.   DOI
53 Davey, M. W., Saeys, W., Hof, E., Ramon, H., Swennen, R. L., Keulemans, J. (2009). Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. Journal of Agricultural and Food Chemistry, 57(5), 1742-1751.   DOI
54 Zhou, L., Wu, H., Li, J., Wang, Z., Zhang, L. (2012). Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy. Meat Science, 90(3), 658-664.   DOI
55 Vilar, W. T. S., Barbosa, M. F., Pinto, L., de Araujo, M. C. U., Pontes, M. J. C. (2020). Determination of N, N-diethyl-3-methylbenzamide and ethyl-butyl-acetylaminopropionate in insect repellent using near infrared spectroscopy and multivariate calibration. Microchemical Journal, 152, 104285.   DOI