This study attempted to find out the degree of agreement between ultrasound image findings along with analysis of attenuation index and scatter distribution index values within tissues through quantitative measurement analysis using liver ultrasound images. From August 2022 to October 2022, liver ultrasound was performed on 45 patients who were suspected of having fatty liver and who received a prescription for liver ultrasound. As a result of the study, as a result of analyzing the agreement between the ultrasound image findings and the tissue attenuation index, the Kappa value was 0.82 (p<0.05), showing a very high agreement between the two examination methods. In addition, as a result of the agreement analysis between the ultrasound image findings and the scatter distribution index in the tissue, the Kappa value was 0.642 (p<0.05), showing high agreement between the two examination methods. At the time of fat liver prediction, the use of liver ultrasound findings and quantitative ultrasonography techniques, such as intra-tissue attenuation index and intra-tissue scatter distribution index, may be helpful in determining the degree of progression of fatty liver patients.
Kang, Sung Ho;You, Sun Kyoung;Lee, Jeong Eun;Ahn, Chi Young
Journal of Biomedical Engineering Research
/
v.41
no.1
/
pp.48-54
/
2020
In this paper, we deal with a liver fibrosis classification problem using ultrasound B-mode images. Commonly representative methods for classifying the stages of liver fibrosis include liver biopsy and diagnosis based on ultrasound images. The overall liver shape and the smoothness and roughness of speckle pattern represented in ultrasound images are used for determining the fibrosis stages. Although the ultrasound image based classification is used frequently as an alternative or complementary method of the invasive biopsy, it also has the limitations that liver fibrosis stage decision depends on the image quality and the doctor's experience. With the rapid development of deep learning algorithms, several studies using deep learning methods have been carried out for automated liver fibrosis classification and showed superior performance of high accuracy. The performance of those deep learning methods depends closely on the amount of datasets. We propose an enhanced U-net architecture to maximize the classification accuracy with limited small amount of image datasets. U-net is well known as a neural network for fast and precise segmentation of medical images. We design it newly for the purpose of classifying liver fibrosis stages. In order to assess the performance of the proposed architecture, numerical experiments are conducted on a total of 118 ultrasound B-mode images acquired from 78 patients with liver fibrosis symptoms of F0~F4 stages. The experimental results support that the performance of the proposed architecture is much better compared to the transfer learning using the pre-trained model of VGGNet.
In this paper, we proposed the 2-stage ultrasound liver image classifier which uses the fractal dimensions obtained from the original image and its 1/2 subsampled image, and the Normalized Fourier Power Spectrum. The fractal dimension based on Fractional Brownian Motion (FBM) is calculated from the variance of the same scale pixels instead of the mean of them. Since the actual ultrasound. liver images does not fully match the FBM, to get the fractal dimension, we use the scale vectors which satisfy the FBM model. In 2-stage classifier, we first classified normal and diffuse liver and then classified the fat liver and cirrhosis from the diffuse liver. For the test liver images. 70% of normal liver and 80% of fat liver and 90% of cirrhosis is classified classified with our 2-stage classifier.
This study aimed to compare filters for reducing speckle noise in ultrasound images using clinical liver images. We acquired the clinical liver ultrasound images, and noisy images were obtained by adding 0.01, 0.05, 0.10, and 0.50 intensity levels of speckle noise to the liver images. The Wiener filter, median modified Wiener filter, gamma filter, and Lee filter were designed for the noisy images by setting window sizes at 3×3, 5×5, and 7×7. The coefficient of variation (COV) and contrast to noise ratio (CNR) were calculated to evaluate noise reduction and various filters. Moreover, the filter with the highest image quality was selected and quantitatively compared to a noisy image. As a result, COV and CNR showed the noise improved result when the Lee filter was applied. Furthermore, the Lee filter image with a window size of 7×7 was noted to possess approximately a minimum of 1.28 to a maximum of 3.38 times better COV and a minimum of 2.18 to a maximum of 5.50 times better CNR than the noisy image. In conclusion, we confirmed that the Lee filter was effective in reducing speckle noise and proved that an appropriate window size needs to be set considering blurring.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.89-90
/
2019
본 논문에서는 ultrasound image Right Parasagittal Liver에 edge detection을 적용한 후, 특징점 검출 알고리즘인 Scale Invarient Feature Transfom(SIFT)를 이용하여 특징점의 위치를 살펴보도록 한다. edge detection 알고리즘으로는 Canny edge detection과 Prewitt edge detection을 적용하기로 한다.
This paper proposes a composite filter for noise reduction of image. To improve the image quality by reducing the noise in the liver ultrasound image, we tried to help the accurate image analysis. In the experiment, the top seven composite filters were selected by combining the Gaussian blur filter, the sharpening filter, and the median filter using the ATS-539 ultrasonic phantom, and applied to the ultrasound image in which this was done. As a result, it was found that the values of SNR, CNR and MSR all increased when the top seven composite filters were applied. In addition, PSNR of more than 30 dB, close to SSIM 1 showed that the image loss rate is small. Therefore, the appropriate application of the proposed composite filter in this research will be useful for accurate video reading and analysis.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.9
/
pp.2206-2212
/
2013
We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.
In diagnostic ultrasound, the quality of image affect to diagnose. To maintain suboptimal imaging uniformly, Quality Assurance of Ultrasound equipment should take periodically. This is article about examination the quality of image in diagnostic ultrasound to understand conditions of probes in hospitals. There is comparative study of convex and linear probes on ultrasound using tissue-mimicking phantom included simulated cysts, echogenic structures. The ultrasonic attenuation coefficient versus frequency of 0.5 dB is representative of normal liver and 0.7 dB is representative of fatty liver condition in ultrasound phantom. There are results of convex probe, 0.5 dB, vertical group, cystic masses, high contrast masses are mostly shown but 0.7 dB, mid level in vertical group, cystic masses and high contrast masses are nearly visible. In linear probe, 0.5 dB, mid level in vertical group, two or four of them are shown in cystic masses and high contrast masses but there are not visible in 11 of cases. 0.7 dB, there are mostly appear under 6 in vertical group, two or four of them show in cystic masses and high contrast masses and there are not shown in 40 of cases, besides. Linear probes in fatty liver condition of ultrasound instrument are not good in the quality of image practically. So there needs to be replace and fix of probes. Actually management of ultrasound probes is inadequate in hospitals. So if there are program of evaluation to check probes periodically in hospitals from establishment of the ultrasound equipment, there will get better image and have a suitable condition of instruments further more.
The method of observing nodular changes on the liver surface using clinical ultrasonography is useful for diagnosing cirrhosis. However, the speckle noise that inevitably occurs in ultrasound images makes it difficult to identify changes in the liver surface and echo patterns, which has a negative impact on the diagnosis of cirrhosis. The purpose of this study is to model the median modified Wiener filter (MMWF), which can efficiently reduce noise in cirrhotic ultrasound images, and confirm its applicability. Ultrasound images were acquired using an ACR phantom and an actual cirrhotic patient, and the proposed MMWF algorithm and conventional noise reduction algorithm were applied to each image. Coefficient of variation (COV) and edge rise distance (ERD) were used as quantitative image quality evaluation factors for the acquired ultrasound images. We confirmed that the MMWF algorithm improved both COV and ERD values compared to the conventional noise reduction algorithm in both ACR phantom and real ultrasound images of cirrhotic patients. In conclusion, the proposed MMWF algorithm is expected to contribute to improving the diagnosis rate of cirrhosis patients by reducing the noise level and improving spatial resolution at the same time.
Since one property(i.e. coarseness, orientation, regularity, granularity etc.) of ultrasound liver images was not sufficiently enough to classify the characteristics of livers, we used the multi-feature vectors from ultrasound images to diagnose the liver disease. The proposed classifier, which uses the multi-feature vectors and Bayes decision rule, performed well for the classification of normal, fat and cirrhosis liver. In our simulation, we used the Battacharyya distance and Hotelling Trace Criterion to select the best multi-feature vectors for the classifier and obtained less classification errors than other methods using single feature vector.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.