• 제목/요약/키워드: Liver expression

검색결과 1,502건 처리시간 0.027초

The Increment of Purine Specific Sodium Nucleoside Cotransporter mRNA in Experimental Fibrotic Liver Induced by Bile Duct Ligation and Scission

  • Lee, Sung-Hee;Chae, Keon-Sang;Nan, Ji-Xing;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.613-619
    • /
    • 2000
  • We investigated the expression profiles of rat fibrotic liver induced by bile duct ligation and scission (BDL/S) using the 3'-directed cDNA libraries. The possibility that the 3'-directed cDNA library represents the mRNA population faithfully was examined by northern blots. During the northern analysis based on fibrotic liver expression profile, we found for the first time that purine specific sodium nucleoside cotransporter (SPNT) was upregulated in BDL/S-induced fibrotic liver. To determine whether the accumulation of bile juice could affect the expression of SPNT mRNA or not, we examined the change of SPNT mRNA expression at 3, 14, 28 days after BDL/S operation. No change in SPNT expression was observed in rat liver at 3 days after surgery. In contrast, there were significant increases in SPNT expression at 14 and 28 days after surgery. We also examined whether chronic liver damage affected SPNT mRNA expression. SPNT mRNA level was significantly increased in BDL/S-induced fibrotic rat liver, whereas no significant change was obserbed in fibrotic livers chronically exposed to carbon tetrachloride or dimethylnitrosamine. From the above results, although further study might be needed, it was considered that the increment of SPNT mRNA in BDL/S liver morphological compatibility to human was remarkable.

  • PDF

아세트아미노펜에 의해 간손상이 유발된 랫드의 유전자 발현 분석 (Gene Expression Analysis of Acetaminophen-induced Liver Toxicity in Rat)

  • 정희경
    • Toxicological Research
    • /
    • 제22권4호
    • /
    • pp.323-328
    • /
    • 2006
  • Global gene expression profile was analyzed by microarray analysis of rat liver RNA after acute acetaminophen (APAP) administration. A single dose of 1g/kg body weight of APAP was given orally, and the liver samples were obtained after 24, 48 h, and 2 weeks. Histopathologic and biochemical studies enabled the classification of the APAP effect into injury (24 and 48 h) and regeneration (2 weeks) stages. The expression levels of 4900 clones on a custom rat gene microarray were analyzed and 484 clones were differentially expressed with more than a 1.625-fold difference(which equals 0.7 in log2 scale) at one or more time points. Two hundred ninety seven clones were classified as injury-specific clones, while 149 clones as regeneration-specific ones. Characteristic gene expression profiles could be associated with APAP-induced gene expression changes in lipid metabolism, stress response, and protein metabolism. We established a global gene expression profile utilizing microarray analysis in rat liver upon acute APAP administration with a full chronological profile that not only covers injury stage but also later point of regeneration stage.

Endoplasmic Reticulum Stress Induces CAP2 Expression Promoting Epithelial-Mesenchymal Transition in Liver Cancer Cells

  • Yoon, Sarah;Shin, Boram;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.569-579
    • /
    • 2021
  • Cyclase-associated protein 2 (CAP2) has been addressed as a candidate biomarker in various cancer types. Previously, we have shown that CAP2 is expressed during multi-step hepatocarcinogenesis; however, its underlying mechanisms in liver cancer cells are not fully elucidated yet. Here, we demonstrated that endoplasmic reticulum (ER) stress induced CAP2 expression, and which promoted migration and invasion of liver cancer cells. We also found that the ER stress-induced CAP2 expression is mediated through activation of protein kinase C epsilon (PKCε) and the promotor binding of activating transcription factor 2 (ATF2). In addition, we further demonstrated that CAP2 expression promoted epithelial-mesenchymal transition (EMT) through activation of Rac1 and ERK. In conclusion, we suggest that ER stress induces CAP2 expression promoting EMT in liver cancer cells. Our results shed light on the novel functions of CAP2 in the metastatic process of liver cancer cells.

Up-regulation of Thy-1 Promotes Invasion and Metastasis of Hepatocarcinomas

  • Cheng, Bian-Qiao;Jiang, Yi;Li, Dong-Liang;Fan, Jing-Jing;Ma, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1349-1353
    • /
    • 2012
  • Increasing evidence has revealed that thy-1 was a potential stem cell marker of liver cancer, but no data have been shown on how thy-1 regulates the pathophysiology of liver cancer, such as proliferation, apoptosis, invasion and migration. We previously demonstrated that thy-1 was expressed in about 1% of hepg2 cells, thy-1+hepg2 cells, but not thy-1-, demonstrating high tumorigenesis on inoculation $0.5{\times}10^5$ cells per BACA/LA mouse after 2 months. In the present study, our results showed that higher expression of thy-1 occurs in 72% (36/50 cases) of neoplastic hepatic tissues as compared to 40% (20/50 cases) of control tissues, and the expression of thy-1 is higher in poorly differentiated liver tumors than in the well-differentiated ones. In addition, thy-1 expression was detected in 85% of blood samples from liver cancer patients, but none in normal subjects or patients with cirrhosis or hepatitis. There was a significant negative correlation between thy-1expression and E-cadherin expression (a marker of invasion and migraton), but not between thy-1 expression and AFP expression in all the liver cancer and blood samples. We further investigated the relationship between thy-1 and E-cadherin in liver cancer hepg2 cell line which was transfected with pReceiver-M29/thy-1 eukaryotic expression vector followed by aspirin treatment. Lower expression of E-cadherin but higher expressions of thy-1 were detected in hepg2 cells transfected with pReceiver-M29/thy-1. Taken together, our study suggested that thy-1 probably regulates liver cancer invasion and migration.

Heat Shock Protein 70 Expression is Increased in the Liver of Neonatal Intrauterine Growth Retardation Piglets

  • Li, Wei;Zhong, Xiang;Zhang, Lili;Wang, Yuanxiao;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1096-1101
    • /
    • 2012
  • Intrauterine growth retardation (IUGR) leads to the dysfunction in digestive system, as well as the alteration in the expression of some functional proteins. Heat shock protein 70 (Hsp70) could be induced by various stress factors, but whether Hsp70 expression is changed in neonatal IUGR infants has not been demonstrated. This study was conducted to explore the expression of Hsp70 in the liver by using the IUGR piglet model. Liver and plasma samples were obtained from IUGR and normal birth weight (NBW) piglets at birth. The neonatal IUGR piglets had significantly lower liver weight than their counterparts. The activities of aspartate aminotransferase and alanine aminotransferase in serum were enhanced significantly in IUGR indicating liver dysfunction. The activities of superoxide dismutase (p<0.01), glutathione peroxidase (p<0.01) and catalase (p>0.05) were lower and the level of malondialdehybe was higher (p<0.05) in IUGR liver compared with in NBW. According to the results of histological tests, fatty hepatic infiltrates and cytoplasmic vacuolization were present in the liver of IUGR piglets, but not in NBW liver. The expression of Hsp70 protein was significantly higher (p<0.05) in IUGR piglet liver than in NBW. Similar to where the hepatic injuries were observed, location of Hsp70 was mostly in the midzonal hepatic lobule indicating that oxidative stress might be responsible for the increased expression of Hsp70.

Norepinephrine induces MAIL mRNA expression in primary cultured hepatocytes through IL-1β released from non-parenchymal cells

  • Kim, Hyeon-Cheol;Jung, Bae Dong
    • 대한수의학회지
    • /
    • 제50권2호
    • /
    • pp.79-84
    • /
    • 2010
  • The molecule possessing ankyrin-repeats induced by lipopolysaccharide (MAIL) protein is a novel member of the $Ikappa{\beta}$ family. In the present study, we examined the effect of norepinephrine (NE) on MAIL mRNA expression in primary cultured mouse hepatocytes and non-parenchymal liver cells. MAIL mRNA expression in hepatocytes and non-parenchymal liver cells was not directly influenced by NE. However, MAIL mRNA expression in hepatocytes was significantly induced by incubation with a culture medium of non-parenchymal liver cells, treated with NE. Pretreatment with an interleukin (IL)-1 receptor antagonist significantly attenuated the stimulatory effect of the medium. Moreover, exogenous $IL-1{\beta}$ induced MAIL mRNA expression in hepatocytes, while IL-6 and tumor necrosis factor $\alpha$ did not. The concentration of $IL-1{\beta}$ in the medium of non-parenchymal liver cells was significantly increased after NE-treatment. These results suggest that NE can induce MAIL mRNA expression in hepatocytes through $IL-1{\beta}$, released from non-parenchymal liver cells.

Effects of Co-Expression of Liver X Receptor β-Ligand Binding Domain with its Partner, Retinoid X Receptor α-Ligand Binding Domain, on their Solubility and Biological Activity in Escherichia coli

  • Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.247-254
    • /
    • 2015
  • In this presentation, I describe the expression and purification of the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a commercially available double cistronic vector, pACYCDuet-1, to express the receptor heterodimer in a single cell as the soluble form. I describe here the expression and characterization of a biologically active heterodimer composed of the liver X receptor β-ligand binding domain and retinoid X receptor α-ligand binding domain. Although many of these proteins were previously seen to be produced in E. coli as insoluble aggregates or "inclusion bodies", I show here that as a form of heterodimer they can be made in soluble forms that are biologically active. This suggests that co-expression of the liver X receptor β-ligand binding domain with its binding partner improves the solubility of the complex and probably assists in their correct folding, thereby functioning as a type of molecular chaperone.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Cyclooxygenase-2 over-expression is associated with increased mast cells in CCl4-induced hepatic fibrosis

  • Jekal, Seung-Joo;Lee, Jae-Hyoung;Park, Seung-Teack
    • 대한임상검사과학회지
    • /
    • 제44권4호
    • /
    • pp.229-238
    • /
    • 2012
  • Cyclooxygenase(COX-2) is an inducible enzyme that catalyzes the synthesis of prostaglandins (PGs) from arachidonic acid. Over-expression of COX-2 has been reported to be associated with progressive hepatic fibrosis in chronic hepatic C infection and rat liver fibrosis induced by carbon tetrachloride($CCl_4$). Recently, it is well known that mast cell products can stimulate the proliferation of hepatic stellate cells and key players in liver fibrosis. But little is known regarding their role in $CCl_4$-induced liver fibrosis in rat. Our aim was to investigate the relation between COX-2 expression and mast cells during liver fibrosis after $CCl_4$ treatment. Thirty Wistar rats were divided into five groups (non-treated 0, 2, 4, 6 and 8-week after $CCl_4$-treatment). Reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry were used to assess the expression of ${\alpha}$-smooth muscle actin (${\alpha}$-SMA), collagen-1 and COX-2 in liver tissue from $CCl_4$-treated rats. The density of collagen and mast cells were determined using a computerized image analysis system in liver sections stained with picrosirius red and toluidine blue, respectively. The expression levels of ${\alpha}$-SMA, collagen-1 and COX-2 mRNA were significantly higher at 2 wk in $CCl_4$-treated groups than non-treated group. The number of mast cells in liver tissues increased gradually from 2 wk to 6 wk depending on the fibrosis severity but decreased abruptly at 8 wk. The significant increase of collagen-1 and ${\alpha}$-SMA mRNA expression in $CCl_4$-treated rats was continued until 6 wk while the COX-2 mRNA was significantly decreased at 8 wk. These results suggest that increased mast cells are closely associated with COX-2 over-expression during hepatic fibrogenesis of $CCl_4$-treated rats.

  • PDF

Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells

  • Kim, Kyoung Hwan;Park, Jeong-Woong;Yang, Young Mok;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.312-319
    • /
    • 2021
  • Objective: Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods: The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results: FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion: MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.