• Title/Summary/Keyword: Liver, magnetic resonance imaging

Search Result 151, Processing Time 0.023 seconds

Hepatic Lymphoma Representing Iso-Signal Intensity on Hepatobiliary Phase, in Gd-EOB-DTPA-Enhanced MRI: Case Report

  • Ahn, Tae-Ran;Kim, Yeo-Eun;Park, Chul-Hi;Jung, Eun-Ah
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.200-204
    • /
    • 2015
  • Image findings of hepatic lymphoma have been reported as variable, ranging from single or multiple small nodules to diffuse infiltrative patterns. On MRI, most hepatic lymphomas show T1 low signal intensity, T2 high signal intensity. Dynamic imaging reveals a hypointense appearance in the arterial phase, followed by delayed enhancement in the portal venous and transitional phase. In the hepatobiliary phase using a hepatocyte-specific contrast agent (which have recently aided in increasing the access to the focal liver lesions), hepatic lymphoma is known to exhibit low signal intensity. We report a case of hepatic lymphoma, which shows iso-signal intensity on hepatobiliary phase, using gadoxetic acid (Gd-EOB-DTPA).

Atypical β-Catenin Activated Child Hepatocellular Tumor

  • Turan, Aynur;Unlu, Havva Akmaz;Karakus, Esra;Erdem, Arzu Yazal;Yakut, Zeynep Ilerisoy
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.2
    • /
    • pp.144-148
    • /
    • 2015
  • Hepatocellular adenomas are a benign, focal, hepatic neoplasm that have been divided into four subtypes according to the genetic and pathological features. The ${\beta}$-catenin activated subtype accounts for 10-15% of all hepatocellular adenomas and specific magnetic resonance imaging features have been defined for different hepatocellular adenomas subtypes. The current study aimed to report the magnetic resonance imaging features of a well differentiated hepatocellular carcinoma that developed on the basis of ${\beta}$-catenin activated hepatocellular adenomas in a child. In this case, atypical diffuse steatosis was determined in the lesion. In the literature, diffuse steatosis, which is defined as a feature of the hepatocyte nuclear factor-$1{\alpha}$-inactivated hepatocellular adenomas subtype, has not been previously reported in any ${\beta}$-catenin activated hepatocellular adenomas case. Interlacing magnetic resonance imaging findings between subtypes show that there are still many mysteries about this topic and larger studies are warranted.

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

New Perspectives in Pediatric Nonalcoholic Fatty Liver Disease: Epidemiology, Genetics, Diagnosis, and Natural History

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.6
    • /
    • pp.501-510
    • /
    • 2019
  • Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The global prevalence of pediatric NAFLD from general populations is 7.6%. In obese children, the prevalence is higher in Asia. NAFLD has a strong heritable component based on ethnic difference in the prevalence and clustering within families. Genetic polymorphisms of patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2, and glucokinase regulatory protein (GCKR) are associated with the risk of NAFLD in children. Variants of PNPLA3 and GCKR are more common in Asians. Alterations of the gut microbiome might contribute to the pathogenesis of NAFLD. High fructose intake increases the risk of NAFLD. Liver fibrosis is a poor prognostic factor for disease progression to cirrhosis. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction are more accurate for steatosis quantification than ultrasound. Noninvasive imaging methods to assess liver fibrosis, such as transient elastography, shear-wave elastography, and magnetic resonance elastography are useful in predicting advanced fibrosis, but they need further validation. Longitudinal follow-up studies into adulthood are needed to better understand the natural history of pediatric NAFLD.

A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

  • Jung, Sang Hoon;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.64-75
    • /
    • 2016
  • Purpose: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. Materials and Methods: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. Results: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median $R^2$ of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Conclusion: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

The study of utility about magnetic resonance elastography for measurements of liver stiffness : the comparisons of ADC value & T2 weighted image (간 경화도 측정을 위한 3.0T 자기공명 탄성계수 영상의 유용성에 대한 고찰 : 확산계수 영상 및 T2 강조 영상과의 비교)

  • Kim, Sang-Woo;Kang, Chung-Hwan;Kim, Sung-Ho;Kim, Kyung-Soo;Kim, Soon-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • The purpose of this study is to evaluate the mutual relations by measuring SNR from T2 weighted image and ADC values on the basis of the stiffness values from liver tissues. This study was conducted that total 37 people(23 of males and 11 of females) were taken the liver MRI examination and average age was $54.5{\pm}12.7$ years old. The equipment was MAGNETOM Skyra 3.0T (SIEMENS, Erlangen, Germany) and 32 channel body-array coil. The examination were conducted with HASTE T2 weighted image by axial plane, Spin-echo EPI (echo planner image) DWI (b-value = 800) and Magnetic resonance elastography. The ROIs (region of interest: 200-300 $mm^2$) were established on the basis of the first axial stiffness image corresponded 95% confidence interval from axial stiffness image and then were measured values. After drawing the grid lines, signals were measured SNR from T2 weighted image and ADC values on the same locations that were analysed other 3 planes respectively. The results were showed correlation (0.057) that were increased to SNR from T2 weighted image by increasing stiffness value that no significant difference statistically p = 0.003. Other results were showed correlations (-0.301) that were decreased to ADC values by increasing stiffness values that no significant difference statistically p = 0.088. In the 3.0T equipment, the results may be error in much the same fashion as the 1.5T from ADC values by evaluation of fibrosis stage. However, Magnetic resonance elastography would be useful method that is used to diagnose exactly liver fibrosis stages in the 3.0T.

  • PDF

Clinical Utility of Liver Stiffness Measurements on Magnetic Resonance Elastrography in Patients with Hepatocellular Carcinoma Treated with Radiofrequency Ablation

  • Kim, Ji Eun;Lee, Jeong Min;Lee, Dong Ho;Chang, Won;Yoon, Jeong Hee;Han, Joon Goo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.231-240
    • /
    • 2016
  • Purpose: To determine whether liver stiffness (LS) measured by magnetic resonance elastography (MRE) can predict the outcome of radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Materials and Methods: A total of 107 patients with Child-Pugh class A liver function who were treated with RFA for single HCC and who had undergone a gradient-echo MRE within 6 months before RFA were included. We evaluated the relationship between the LS values and the ablation volume, local tumor progression (LTP), and intrahepatic distant recurrence (IDR). We also constructed receiver operating characteristic (ROC) curves to examine the role of LS in predicting liver function deterioration, which was defined as an increase of Child-Pugh score by one point or more at 1 year after RFA. Results: There was no significant correlation between LS and ablation volume, and neither time to LTP nor IDR was associated with LS. Among the 66 patients who did not have recurrence 1 year after RFA, 5 patients (7.6%) developed liver function deterioration. A high LS value was significantly associated with development of liver function deterioration after RFA and the area under the ROC curve was 0.764 (95% CI 0.598-0.929, P = 0.003). Conclusion: LS measured by MRE could not predict ablation volume and tumor recurrence. However, high LS values were significantly associated with development of liver function deterioration.