• Title/Summary/Keyword: Littoral zone

Search Result 65, Processing Time 0.049 seconds

Comparisons of Fish Communities in Ledbetter Creek and Ledbetter Embayment of Kentucky Lake, Kentucky, USA

  • Seo, Jinwon;Timmons, Tom J.
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.137-140
    • /
    • 2002
  • To determine if fish density, biomass, species richness, and species diversity were greater in ecotone than the stream and littoral zones, I sampled fish monthly in the Ledbetter Creek through Ledbetter Creek Embayment in Kentucky Lake, Kentucky, from April to October 1996 by using throw traps. During the first four months (daytime only) fish density did not vary significantly among zones or among months. However, there were significant differences among zones during the last three months and the stream zone had significantly higher mean fish density than both the littoral zone and the ecotone. Fish biomass also differed significantly among zones during the last three months. The stream zone had the highest mean fish biomass among zones, significantly higher than the ecotone, but not different than the littoral zone. There were no statistically significant differences among zones during the first four months, but mean fish biomass in the stream zone was about eight times higher than the ecotone, The stream zone had the highest fish species richness among zones. Differences were significant among zones during the last three months, and the stream zone (0.98 $\pm$ 0.04) had significantly greater mean fish species richness than the ecotone (0.45 $\pm$ 0.01), but not significantly than the littoral zone (0.56 $\pm$ 0.17). Fish species richness differed significantly among months during the first four months, Monthly species diversities ranged from 0.62 to 1.96 in the stream zone, 0 to a.57 in the ecotone, and 0 to 2.60 in the littoral zone. Combined species diversities in the stream, the ecotone , and the littoral zones were 2.72, 3.58, and 3.10, respectively, There were five families of fishes captured frequently enough for their individual numbers to comprise at least 8 % of the total. Family rankings in the stream zone were opposite of the littoral zone. Percidae was the most abundant family and Clupeidae was absent in the stream zone, whereas Percidae was uncommon and Clupeidae was the most abundant family in the littoral zone. Atherinidae was dominant in the ecotone. Five of the most abundant species comprised 65 % of the total number. The guardian darter occurred only in the stream zone, and it was consistently found in riffles. Longear sunfish and central stoneroller also had significant differences of mean fish densities among zones, and they were found mostly in the stream zone. Threadfin shad and bullhead minnow were almost exclusively caught in the littoral zone. I finally concluded that the ecotone between the stream and the littoral zone in this small-scale freshwater aquatic ecosystem was not as productive as the ones in other ecosystems.

  • PDF

Habitats Selection of Zooplankton between Pelagic and Littoral Zone in Shallow Reservoirs in Summer (여름철 얕은 저수지의 중앙과 연안에서 동물플랑크톤 군집의 서식지 선택)

  • Jeong, Hyun-Gi;Seo, Jung-Kwan;Lee, Hae-Jin;Lee, Won-Choel;Lee, Jae-Kwan
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.188-195
    • /
    • 2010
  • The Abundance of zooplankton was studied in the pelagic and the littoral zone in four shallow reservoirs along with the Nakdong river basin of S. Korea. In the pelagic zone, there was a higher zooplankton density ($477.5{\pm}312.4$ ind. $L^{-1}$) than in the littoral zone during our study period (t=2.337, p<0.05). Overall, Rotifers were the most abundant group in the studied reservoirs. However, there are no significant correlations between the pelagic and the littoral zone in physical and chemical parameters. In the pelagic and the littoral zone, zooplankton density usually increased with increasing density of aquatic plants in the littoral zone. However, this study showed different trends. Although macrophyte abundance was higher in the littoral zone than in the pelagic zone, zooplankton abundance was higher in pelagic zone. Moreover, when macrophytes (Trapa japonica and Spirodela plyrhiza) covered the complete water surface of the reservoir, zooplankton abundance was higher. It appears that comparisons between the pelagic and the littoral zone give important cues on the selection of habitats by zooplankton. It is assumed that a higher density of aquatic plants does not always imply a higher density of zooplankton in the littoral zone. Furthermore, when the water surface was covered with aquatic plants, the zooplankton communities showed the highest density in the pelagic zone. These results imply that habitat selection of the zooplankton community (Rotifers) is influenced by aquatic plant density with an associated decrease in predation pressure during summer.

A Comparative Study on Litter Decomposition of Emergent Macrophytes in the Littoral Zone of Reservoir

  • Jo, Kang-Hyun;Gong, Hak-Yang
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.333-339
    • /
    • 1998
  • Litter decomposition is a key process in energy flow and nutrient cycling in the freshwater littoral zone, and is regulated by physicochemical properties of litters. Using a litterbag method, we compared the decomposition rates of 16 different litter types from 10 plant species of the emergent macrophytes for one year in the littoral zone of the Paltangho Reservoir, Korea. The regression analysis fitted to the various decomposition models showed that mass loss of the litters with time best fitted an asymptotic function. The litters of the emergent macrophytes were composed of two compartments, labile and refractory. The macrophytic litters showed a great variety in decomposition dynamics depending on sources of litters. The labile compartment of the initial litter mass was in a wide range between 18% and 99%, and their decomposition rates varied from 0.0037 to 0.0131 day-1. The decomposition processes of the emergent macrophytes were determined by the relative amounts of the labile and refractory compartments and by the decomposition rate of the habile one in the littoral zone.

  • PDF

Use of the cast net for monitoring fish status in reservoirs distributed in the Korean peninsula

  • Yoon, Ju-Duk;Kim, Jeong-Hui;Lee, Hae-Jin;Jang, Min-Ho
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.383-388
    • /
    • 2015
  • Reservoirs consist of two different environments, the littoral and the pelagic zone, and different fishing gear is commonly used in each zone-gill nets in the pelagic zone and electrofishing in the littoral zone. However, an active fishing gear, the cast net, is normally used instead of electrofishing for scientific studies in South Korea. In order to estimate cast net effectiveness for determining fish status in reservoirs, the study was conducted at 15 reservoirs with two different fishing gears: a cast net in the littoral zone and gill nets in the pelagic zone. When combining catches of both gears, species richness increased substantially compared to using one gear only. There was a size difference in fish caught by each net, and small fish were predominantly caught with the cast net due to its small mesh size (7 mm). The combined length of six species, used for length-weight relationship analysis, collected with the cast net was smaller than that collected with gill nets (independent t-test, P < 0.05). In this study, cast net sampling provided sufficient data for the littoral zone, but not enough to identify the overall fish assemblage in studied reservoirs. Utilization of only one gear can therefore lead to substantial underestimation of fish status, and a combination of both gears is recommended for determining more reliable estimates of fish status in reservoirs.

Diel Pattern of Littoral Swarming in Moina macrocopa and Impact of Juvenile Fish Density

  • Jeong, Hyun-Gi;La, Geung-Hwan;Kim, Hyun-Woo;Jang, Min-Ho;Jeong, Kwang-Seuk;Yoon, Ju-Duk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.513-517
    • /
    • 2010
  • The diel swarming of Moina macrocopa and the relationship between environmental factors were evaluated in a shallow reservoir. The littoral density of Moina macrocopa maintained low from night to noon, reached maximum density at the afternoon with compact swarms at the waters' edge, and dispersed after sunset. The recruitment of Moina macrocopa and changes of water temperature (r=0.709, p<0.001) and juvenile fish density (r=0.511, p=0.002) in the littoral zone showed a significant positive relationships. After the induction of diel horizontal migration toward littoral zone, therefore, direct juvenile fish predation pressure should be induced Moina macrocopa swarming.

Cellular Slime Molds in the Littoral Grassland Ecosystems in the Lake Paldangho (팔당호 연안대 초지생태계의 세포성 점균)

  • 심규철;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • Five dictyostelid cellular slime molds were isolated from the littoral grassland ecoystems of the lake Paldangho, safeguard of waterworks, Kyounggi-do, South Korea. They were Poiysphoadylium violceum, Dictyosielium aureo-stipes var. aureo-stipes D crassicaule, D macrocephalum and D gigauteum. P. violaceum was dominant species. It live on the low nutrient and barren soils as the littoral zone destabilized in surface soils, litters and chemicals by inundation an rain precipitation. Key words: Cellular slime mold, Littoral grassland ecosystem.

  • PDF

Zooplankton Community Distribution and Food Web Structure in Small Reservoirs: Influence of Land Uses around Reservoirs and Kittoral Aquatic Plant on Zooplankton (소형저수지에서 동물플랑크톤 군집 분포와 먹이망 구조: 주변 토지 이용과 수변식생이 동물플랑크톤 군집에 미치는 영향)

  • Choi, Jong-Yun;Kim, Seong-Ki;Hong, Sung-Won;Jeong, Kwang-Seuk;La, Geung-Hwan;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.332-342
    • /
    • 2013
  • We collected zooplankton from May to October, 2011, with the aim of understanding the zooplankton community distribution and food web interaction between the open water and littoral (aquatic plants) zones in two small reservoirs with different land covers (Sobudang, Myeongdong). Small-sized reservoirs are more abundant in South Korea, and a total of 51 and 65 species of zooplankton were identified at the two small reservoir (Sobudang and Myeongdong), where zooplankton densities were more abundant in the littoral zone than in the open water zone. Cladocerans and copepods densities were also higher in the littoral zone, in contrast, rotifers showed higher densities in the open water zone (t-test, P/0.05). Epiphytic zooplankton dominated at the littoral zone (Lecane, Monostyla, Alona and Chydorus) because aquatic plants provided refuge spaces for attachment. Some rotifers (e.g. Brachionus, Keratella and Polyarthra) were more abundant in the open water zone because of their small size, which might help them to go unnoticed by predators. In two-way ANOVA, rotifers related to two reservoirs or habitat space (littoral zone and open water zone), but cladocerans and copepods showed a statistically significant relationship on only two reservoirs. The results of stable isotope analysis showed that zooplankton in the littoral zone tended to depend on organic matter attached to aquatic plants as a food source, which indicates the avoidance of competition of zooplankton with other macro-invertebrates (e.g. Damselfly larva, Cybister brevis and Neocardina denticulate). As a result, zooplankton community distribution is determined by not only habitat space (aquatic plant zone and open water zone) but also by food source (phytoplankton).

Flora and Ecological Characteristics of Hydrophytes in the Littoral Zone of Paldang Reservior (팔당호 연안생태계의 수생식물상과 생태적 특성)

  • Lim, Yong-Seok;Ma, Seon-Mi;Na, Seong-Tae;Choi, Hong-Keun;Shin, Hyun-Chur
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.30-44
    • /
    • 2005
  • To investigate the flora and vegetation structure of vascular plants in the littoral zone of Paldang Reservoir, from April, 2003 to April 2004, nine sampling sites were selected. Along the Paldang Reservoir, 128 taxa, consisted of 51 families and 96 genera, were identified, among them, hydrophytes were confirmed as 38 taxa, which was comprised 29.7% to total taxa, whereas hygrophytes were 44 taxa and terrestrial plants were 46 taxa. Emergent hydrophytes consists of 21 taxa, including Phragmites australis and Typha angustifolia, and next, submerged hydrophytes were 8 taxa. However, the kinds and vegetation area of submerged hydorphytes were reduced compared to previous studies. In the littoral zone of Paldang Reservoir, the aquatic vegetation was widely developed near Dumulmori, Yangsuri, and Kwangdong Bridge, downstream of Kyungancheon. The average number of hydrophyte per sampling sites were 2.7 taxa, whereas hygrophytes were 2.5, and land plants were 1.8. In addition, the hydrophytes in the littoral zone of Paldang Reservoir showed the typical vertical zonation pattern like a natural swamp. These results mean that the littoral zone of Paldang Reservoir has the typical characteristics of aquatic plant ecosystem.

Distribution of Aquatic Macrophytes in the Lttoral Zone of Lake Platangho, Korea (팔당호 연안대에서 대형수생식물의 분포)

  • Cho, Kang-Hyun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • In the littoral zone of Lake Paltangho, a vegetation map of aquatic macrophytes was constructed to estimate their occupied area, and the change of abundance of submersed macrophytes was examined along water depth to elucidate niche perferences on the depth gradient. Total area of the littoral zone was 267 ha, of which submersed, emergent and floating-leaved macrophytes covered 155ha, 103 ha and 10ha, respectively. Submersed macrophytes were distributed within a water-depth of 2.5m, with an apparent pattern of zonation: Vallisnaria gigantea and Ceratophyllum demersum at the deeper water depth of 1.5~2.5m.

  • PDF