• Title/Summary/Keyword: Lithium-silicate

Search Result 50, Processing Time 0.025 seconds

Effect of surface finishing treatments on the color stability of CAD/CAM materials

  • Ozen, Funda;Demirkol, Nermin;Oz, Ozge Parlar
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.150-156
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the effect of different surface finishing processes on the color stabilities of lithium disilicate glass-ceramics, zirconia-reinforced lithium silicate ceramics, and resin nanoceramics after artificial ageing. MATERIALS AND METHODS. 216 samples were prepared from 3 different CAD/CAM materials (LAVA Ultimate, IPS e.max CAD, VITA Suprinity) with A1 HT color at a size of 14 × 12 mm and a thickness of 0.5 ± 0.05 mm. Color measurements of the samples were performed with a spectrophotometer using color parameters and CIE Lab color system on a gray backing between baseline color and after 5000 cycles of artificial ageing in 4 stages (i.e. the first measurement before the treatment, the second measurement after polishing, the third measurement after cement application, and the fourth measurement after artificial ageing). The results were evaluated using the Variance analysis and Fisher's LSD test. RESULTS. Resin nanoceramics (LU) exhibited higher color change values than zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) ceramics after artificial ageing. Manual polishing and glazing resulted in similar color change for LU and VS (P>.05). In the EC group, glazing provided statistically different results as compared to the manual polishing and control groups (P<.05). Among the ceramic groups, color change values of the subgroup, which was treated by glazing, of the zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) samples were below the clinically acceptable level (ΔE < 3.5). CONCLUSION. The lowest color change for all stages was observed in Vita Suprinity.

Reforming Property of Tile and Concrete Surface layer Using Self-cleaning Concrete Impregnant (Self-cleaning 침투성 함침제의 적용에 따른 타일 및 콘크리트 표층부의 개질특성)

  • Song, Hun;Jeon, Chan-Soo;Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • Concrete structure is not the only material vulnerable to physical and chemical processes of deterioration associates with severe conditions. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Especially, Carbonation, chloride ion attack is more important factor of concrete durability. This study is interested in manufacturing the self-cleaning concrete surface impregnant including TEOS, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. Form the results, TEOS and lithium silicate are very effective that increasing the concrete durability using self-cleaning concrete impregnant. Self-cleaning concrete impregnant specimens is satisfied with performance requirement of KS standard in adhesion test in tension but the reinforcement of concrete substrate is slight. So, the self-cleaning concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

A Study of Hydration Characteristics on Soluble Silicate to Develop Fire Protective Coating (방화피복재 개발을 위한 용해성 규산염의 수화특성에 관한 연구)

  • 김정훈;이내우
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.90-98
    • /
    • 1996
  • In order to investigate the effects on intumescence to fire protective coatings, the characteristics of solubility, hygroscopic nature and X-ray diffration results on soluble silicate were determined. Solubility is depended on the mutual action of each silicate. In the result of hygroscopic characteristics by water absorption under several kinds of relative humidity, lithium silicate is more stable than sodium and potassium silicate over moistures. Eventhough free water is evaporated over $100^{\circ}C$ , physically adsorption water and ionic water are eliminated about $200^{\circ}C$, but evolution of structural water is expected to be emitted between 400~$600^{\circ}C$ range. Those are considered to be contributed intumescence on soluble silicate.

  • PDF

Improved Cycling Ability of Si-SiO2-graphite Composite Battery Anode by Interfacial Stabilization (계면안정화를 통한 Si-SiO2-흑연 복합재 음극의 전기화학적 특성 개선)

  • Min, Jeong-Hye;Bae, Young-San;Kim, Sung-Su;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.154-159
    • /
    • 2012
  • Structural volume change occurring on the Si-based anode battery materials during alloying/dealloying with lithium is noticed to be a major drawback responsible for a limited cycle life. Silicon monoxide has been reported to show relatively improved cycling performance compared to Si-containing materials for rechargeable lithium batteries, due to the structural buffering role of in-situ formed $Li_2O$ and lithium silicate during the reaction of silicon monoxide and lithium. Here we report improved cycling ability of interfacially stabilized Si-$SiO_2$-graphite composite anode using silane-based electrolyte additive for rechargeable lithium batteries, which includes low cost silicon dioxide for structural stabilization and graphite for enhanced conductivity.

A review on the recovery of the lithium carbonate powders from lithium-containing substances (리튬 함유 물질로부터 탄산리튬 회수에 대한 고찰)

  • Kim, Dae-Weon;Park, Jae Ryang;Ahn, Nak-Kyoon;Choi, Gwang-Mook;Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.91-106
    • /
    • 2019
  • The demand for lithium has increased sharply due to the explosive increase in lithium secondary batteries for environment-friendly vehicles (EV: Electric Vehicle, HEV: Hybrid Electric Vehicle, PHEV: Plug-in Hybrid Electric Vehicle). Traditionally, lithium has been produced mainly from lithium-containing minerals and brine, and recently it also has been recovered along with other valuable metals by recycling cathode materials of lithium secondary batteries. In this study, we comprehensively reviewed various recovering precesses of lithium from lithium-containing substances.

The Fabrication of Micro-framework Using Photosensitive Glass-ceramics (감광성 결정화유리를 이용한 미세 구조물 제조에 대한 연구)

  • 김형준;이상훈;연석주;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • In lithium silicate photosensitive glass-ceramics, the relationship between lithography time and crystallization, and the effect of addition of mineral acid in etching rate and pattern shape were investigated. Irradiation times for micropatterning were less than 5 minutes in which Ce3+ ions in glass were changed rapidly to Ce4+ with ultra violet light. Overexposure to ultra brought about blot of pattern by diffiraction of light. Addition of mineral acid to HF enhanced etching rate as compared with HF solution only. The addition of H2SO4 especially increased the etching rate by 70%. But the mixed solution also increased the etching rate of the noncrystallized portion of the glass and this resulted in heavy etching. Etching with ultrasonic wave showed higher etching rate than that with the static or fluid method.

  • PDF

A Study on the Removal of Heavy Metal with Mg-Modified Zeolite

  • Wang, Jei-Pil;Kim, Gyu-Cheol;Go, Min-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • The subject of this study is a zeolite generated as a by-product of recycling LAS (lithium-aluminum-silicate) resources, a kind of glass and ceramic produced by induction. The zeolite by-product is modified into Mg-zeolite using Mg as a cation to absorb Pb, a heavy metal generated from water pollution caused by recent industrial wastewater. An ion-exchange method is used to carry out the modification process, from zeolite byproduct to Mg-zeolite, and simultaneously absorb the Pb in the heavy-metal solution (99.032 mg/L). It is found that the sodium zeolite in the raw material residue can be modified to magnesium zeolite by reacting it with a mixture solution at 1 M concentration for 24 h. As a result, it is found that the residual Pb (0.130 mg/L) in the heavy metal solution is shown to be absorbed by 99.86%, with successful formation of a Mg-modified zeolite.

An Experimental Study on the Basic Properties of Penetrating repair material using Silicate-based Inorganic Materials (규산염계 무기 재료를 활용한 침투성 보수재의 기초 특성에 관한 실험적 연구)

  • Ha, Sang-Woo;Oh, Sung-Rok;Choi, Yung-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this study, permeable repair materials mainly composed of silicate - based inorganic materials(SIM), which are easily available domestically, were prepared as a basic study for the development of permeable repair materials using SIM. SIM were compared and examined for their performance as repair materials by selecting a product group which has many cases of use in foreign countries. The SIM used were mainly composed of sodium, potassium and lithium silicate. Performance evaluation of SIM was performed by absorption and penetration, compression and adhesion, rapid chloride ion penetration, rapid freezing and thawing, and chemical resistance test. According to the test results, SIM showed effective performance in all areas, mainly because SIM permeates into the interior of the capillary and has a dense internal microstructure. Therefore, it can be used variously to improve the durability of concrete based on the results of this experiment.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.