• 제목/요약/키워드: Lithium-ion battery recycling

검색결과 72건 처리시간 0.025초

이차전지 음극재 탄소 소재 재활용에 대한 연구 (A Study on the Recycle of Carbon Material in Anode of Secondary Battery)

  • 한경재;김유진;윤성진;강유진;장민혁;조형근;조혜령;서동진;박주일
    • 유기물자원화
    • /
    • 제30권4호
    • /
    • pp.59-66
    • /
    • 2022
  • 리튬이온 배터리는 휴대폰 시장과 함께 크게 확대되었고 전기 자동차 사업이 본격적으로 활성화됨에 따라, 이후에도 많은 사람의 관심을 끌게 될 분야이다. 지금까지는 리튬이온 배터리 내부에 있는 유가금속에 대한 회수에 많은 사람이 관심을 끌고 있지만, 음극재로서 주로 활용되는 흑연 또한 재활용가치는 충분하다. 따라서 순도 높은 흑연의 회수와 유가금속의 회수를 함께 하기 위해, 폐 리튬이온 배터리로부터 흑연의 정제 및 분리, 흑연의 전기적 특성을 회복하는 재생과정을 통해 다시금 이차전지의 음극재로써 활용할 수 있는 흑연을 만들어 내는 과정을 가지게 할 것이다. 본 논문에서는 폐 흑연을 재생 흑연으로 바꾸는 과정과 재생 흑연이 가져오는 경제적 효과를 기술한다.

리튬이온 폐배터리의 효율적인 재활용을 위한 발전된 SOC 추정방법의 필요성 연구 (Research of the advanced SOC estimation method for the efficient recycling of the retired Lithium-ion battery)

  • 이현준;박종후;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.54-55
    • /
    • 2015
  • 본 논문에서는 리튬-이온(Lithium-ion) 폐배터리 효율적인 재활용을 위한 발전된 SOC 추정방법의 필요성과 간단한 개념을 언급하고자 한다. 배터리는 노화되면 용량이 줄어들고 임피던스의 크기가 증가해 기존의 새 배터리의 SOC 추정방법으로는 정확한 추정이 어렵다. 따라서, 폐배터리를 안전하고 효율적으로 사용하기 위해서는 그에 맞는 SOC 추정방법이 필요하다. 따라서, 폐배터리의 간단한 개념을 설명하고, 동일한 배터리 등 가회로모델과 EKF 알고리즘을 적용한 새 리튬-이온 셀과 노화된 리튬-이온셀의 SOC 추정결과를 비교하고 노화에 따른 배터리 파라미터값의 변화를 분석해봄으로서 발전된 SOC 추정방법의 필요성에 대해 논의해보고자 한다.

  • PDF

폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구 (Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials)

  • 김희선;김보람;김대원
    • 청정기술
    • /
    • 제30권1호
    • /
    • pp.28-36
    • /
    • 2024
  • 전기차의 수요가 증가함에 따라 리튬이온전지의 시장 또한 급증하고 있다. 리튬이온전지의 배터리 수명은 제한되어 있으며, 수명을 다한 배터리의 교체 필연적이므로 폐리튬이온전지 배터리가 발생하게 된다. 이에 리튬이온전지 중 폐리튬인산철(LiFePO4, 이하 LFP라고 함) 양극재 분말에서부터 리튬은 선택적으로 선침출하고 인산철(FePO4) 분말을 회수하였다. 회수된 인산철 분말은 탄산나트륨(Na2CO3) 분말과 혼합하여 열처리하여 그 결정상을 확인하였다. 열처리 온도를 변수로 하였고, 이후 증류수를 이용하여 수침출 후 각 성분의 침출률 및 분말 특성을 비교하였다. 본 연구에서 리튬은 약 100% 침출률을 보였고 800 ℃에서 열처리한 분말의 경우 인이 약 99% 침출되었으며, 침출 잔사는 Fe2O3 단일 결정상으로 확인되었다. 따라서 본 연구에서는 폐LFP 분말로부터 리튬, 인 그리고 철 성분을 개별적으로 분리 및 회수할 수 있었다.

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

이차전지(二次電池) 제조공정(製造工程)스크랩으로부터 고효율(高效率) 親環境(친환경) 코발트(Co)와 리튬(Li)의 회수(回收)에 관(關)한 연구(硏究) (A Study on the Cobalt and Lithium Recovery from the Production Scraps of Lithium Secondary Battery by High Efficient and Eco-friendly Method)

  • 이정주;정진도
    • 자원리싸이클링
    • /
    • 제19권6호
    • /
    • pp.51-60
    • /
    • 2010
  • 리튬이차전지 양극스크랩으로부터 코발트와 리튬을 회수하기위해 물리적 전처리, 침출, 용매추출 및 회수실험을 행하였다. 실험재료로 제조공정에서 발생되는 코발트계 양극스크랩을 사용하여 단위공정별 최적조건을 구하였다. 물리적전처리 최적조건은 온도 $500{\sim}550^{\circ}C$, 파쇄날 회전속도 1000rpm이었으며, 침출 최적조건은 300rpm, 2M $H_2SO_4$, 2.5M $H_2O_2$, $95^{\circ}C$이었다. D2EHPA(bis(2-ethylhexyl) phosphoric acid) 와 PC88A를 각각 알루미늄과 코발트의 추출제로 사용하여 분리.정제하였으며, 코발트는 염기성시약을 사용하여 $Co(OH)_2$로, 리튬은 탄산나트륨 및 LiOH를 사용하여 탄산리튬($LiCO_3$)으로 회수하였다. $Co(OH)_2$는 열처리를 하여 삼산화코발트($Co_3O_4$)로 만들고 분쇄기를 사용하여 10 ${\mu}m$정도의 입자를 만들었다. 최적조건에서 코발트와 리튬 회수율은 99%이상, 리튬회수율은 99%이상이었으며, 삼산화코발트의 순도는 99.98%이상이었다.

폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出) (Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid)

  • 안재우;안효진
    • 자원리싸이클링
    • /
    • 제20권4호
    • /
    • pp.65-70
    • /
    • 2011
  • 페리튬이온전지 양극활물질인 $LiCoO_2$로부터 코발트와 리튬을 회수하기 위한 기초 연구로 환경친화적인 유기산을 이용하여 코발트와 리튬의 침출에 관한 연구를 실시하였다. 주요 실험 변수로는 유기산 종류 및 농도, 과산화수소 농도, 반응 시간 및 온도 그리고 고액농도비 등 코발트와 리튬의 침출에 영향을 미칠 수 있는 인자들에 대하여 고찰하여 최적 조건을 얻고자 하였다. 실험 결과 사용한 유기산중에서 Latic acid가 코발트 및 리튬의 침출율이 99.9%로 가장 우수 하였다. 한편, 구연산을 이용하여 창출 실험한 결과에서 과산화수소의 농도, citric acid의 농도 및 반응온도가 증가함에 따라 코발트 및 리튬의 침출율이 증가하였다. 그러나 고액농도비가 증가함에 따라 침출율은 감소하는 경향을 보였다.

폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선 (A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries)

  • ;;이만승
    • 자원리싸이클링
    • /
    • 제31권1호
    • /
    • pp.12-20
    • /
    • 2022
  • 폐리튬이온전지를 용융환원시키면 구리, 코발트, 철, 망간, 니켈 및 규소를 함유한 금속합금을 얻는다. 금속합금의 황산침출용액에서 상기 금속을 분리하기 위한 공정을 개발하여 발표하였다. 이 공정에서는 철(III)과 구리(II)를 분리하기 위해 이온성액체를 사용하였다. 본 연구에서는 이온성액체를 대체하기 위해 D2EHPA와 Cyanex 301을 추출제로 사용했다. 철(III)과 구리(II)는 황산침출액으로부터 0.5 M의 D2EHPA에 의한 3단의 교차추출 및 0.3 M의 Cyanex 301로 분리하는 것이 가능했다. 유기상으로부터 철(III)과 구리(II)의 탈거는 각각 50%와 60%의 왕수로 가능했다. 연속실험의 물질수지로부터 금속의 회수율과 순도는 99%이상으로 확인되었다.

NCM Black Mass 황산침출 개선을 위한 대체침출제 메탄술폰산의 적용가능성 연구 (Feasibility Study of Methanesulfonic Acid (MSA), an Alternative Lixiviant to Improve Conventional Sulfuric Acid Leaching of NCM Black Mass)

  • 정혜원;이제승;송강훈;박민서;안준모
    • 자원리싸이클링
    • /
    • 제33권1호
    • /
    • pp.58-68
    • /
    • 2024
  • 핵심광물인 니켈, 코발트, 리튬은 NCM계 리튬이온배터리(이하 LIB)의 양극소재로 알려져 있다. 탄소중립 기조에 따라 전기자동차의 보급량 증가로 핵심광물 수요도 증가할 것으로 예상된다. 하지만, LIB용 핵심광물 Li, Co, Ni의 수요대비 공급 부족으로 인해, 폐리튬이온배터리(EOL LIB)의 리싸이클링 수요가 증가할 것으로 예상된다. EOL LIB(폐 LIB) 재활용은 유해화학물질 무기산 침출제인 염산(HCl), 질산(HNO3), 황산(H2SO4)을 침출공정에 적용하여 재활용한다. 본 연구에서는 친환경 대체침출제 메탄술폰산(이하 MSA)의 적용 가능성을 검토하였다. 또한, 침출제 농도, 환원제 농도, 침출시간, 광액농도(P/D), 온도 등의 침출인자가 NCM Black mass 침출에 미치는 영향을 연구하였다. 침출실험 결과, 침출제와 환원제 농도, 침출시간, 침출온도가 증가함에 따라 목적금속 Ni, Li, Co, Mn의 침출률이 향상됨을 확인하였고, 금속의 최대 침출률은 80℃에서 99% 이상으로 나타났다. 또한, MSA는 NCM Black mass 대상 침출에 적용하여 Ni, Li, Co, Mn을 회수할 수 있음을 확인하였다.

리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向) (Technology Trends of Cathode Active Materials for Lithium Ion Battery)

  • 황용길;길상철;김종헌
    • 자원리싸이클링
    • /
    • 제21권5호
    • /
    • pp.79-87
    • /
    • 2012
  • 리튬이온전지의 대형화와 범용화에 따라 경제성과 안정성 관점에서 정극재료의 개발은 중요한 과제로 대두되고 있다. 18650 원통형 전지의 에너지 밀도는 발매 초기인 1991년 230Wh/l에서 2005년 2배 이상의 500Wh/l로 증가하였으며, 제품 대부분의 에너지용량은 450~500 Wh/l, 150~190Wh/kg이고 안전성, 제조비 절감 및 장 수명을 중점적으로 개발하고 있다. $LiCoO_2$ 정극활물질 중의 Co가 고가이므로 Co 사용량을 줄이면서 에너지 용량을 향상시키기 위하여 $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, $LiFePO_4$-C복합체 (167 mA/g)등이 개발되고 있다. 전동자전거용 전지는 출력밀도 500 Wh/kg, 전동공구용 1,500Wh/kg, EV나 PHEV용으로는 4,000~5,000Wh/kg의 대용량 출력밀도를 요구하고 있으므로 배터리 소재의 성능을 향상시키려고 많은 연구가 진행되고 있다. 최근 Graphene-sulfur 복합체정극활물질 600 Ah/kg, 2차전지용 분자클러스터(molecular cluster) 320 Ah/kg 등의 새로운 정극활물질이 연구 개발되고 있으므로 실용화가 기대된다.

폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법 (Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials)

  • 구희숙;정여진;강가희;김송이;김수경;양동효;이강인;손정수;권경중
    • 자원리싸이클링
    • /
    • 제24권3호
    • /
    • pp.44-50
    • /
    • 2015
  • 전기자동차의 수요가 증가함에 따라 리튬이온전지의 생산량도 증가하여 효율적인 전지 재활용 기술이 요구된다. 폐리튬이온전지를 재활용하는 방법에는 크게 건식제련과 습식제련에 기반한 방법으로 나눌 수 있다. 본 연구에서는 하이브리드 자동차에 사용된 폐리튬이온전지의 양극활물질을 습식제련에 기반한 암모니아침출법을 이용하여 활물질 내의 유용금속인 Ni, Mn, Co의 침출거동을 조사하였다. 물리적으로 처리된 활물질의 입자크기는 -65 mesh이며, 주된 원소는 14.0 wt% Ni, 13.0 wt% Mn, 5.7 wt% Co이다. 암모니아, 환원제 (아황산암모늄), pH 완충제 (탄산암모늄 혹은 황산암모늄)의 존재하에 각 금속의 침출거동을 확인하고, 또한 침출시간과 온도에 따른 침출률의 영향도 조사하였다. 환원제의 존재는 Ni과 Co의 침출률 향상을 위해 필수적이다. 암모니아침출법은 산침출법과 달리 Ni/Co와 Mn의 선택적인 침출이 가능하여 침출된 유용금속을 분리하는 단계를 줄일 수 있고, 산침출 후 수반되는 침전과정 시 필요로 하는 추가 염기성 시약의 사용을 줄일 수 있다.