• Title/Summary/Keyword: Lithium-Ion Batteries

Search Result 724, Processing Time 0.026 seconds

Atomic Force Microscopy Applications to the Next Generation Lithium-ion Batteries (차세대 리튬이온이차전지 연구에서의 원자력 현미경 활용)

  • Lee, Ji Hyun;Gong, Sang Hyuk;Kim, Hyeong Woo;Kim, Hyung-Seok
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.381-392
    • /
    • 2019
  • Recently, demands for lithium-ion batteries (LIB) in various fields are increasing. In particular, understanding of the reaction mechanism occurring at the electrode-electrolyte surface/interface is significant for the development of advanced LIBs. Meanwhile, research and development of LIBs highly requires a new specific characterization approach. For example, atomic force microscopy (AFM) has been utilized to the LIB research field for various purposes such as investigation of topography, electrochemical reactions, ion transport phenomena, and measurement of surface potential at high resolution. Advances in the AFM analysis have made it possible to inspect various material properties such as surface friction and Young's modulus. Therefore, this technique is expected to be a powerful method in the LIB research field. Here, we review and discuss ways to apply AFM to LIB studies.

Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries (리튬 2차전지용 전해질 소재의 개발 동향)

  • Lee, Young-Gi;Kim, Kwang-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.242-255
    • /
    • 2008
  • In lithium-ion batteries(LIB), the development of electrolytes had mainly focused on the characteristics of lithium cobalt oxide($LiCoO_2$) cathode and graphite anode materials since the commercialization in 1991. Various studies on compatibility between electrode and electrolytes had been actively developed on their interface. Since then, as they try to adopt silicon and tin as anode materials and three components(Ni, Mn, Co), spinel, olivine as cathode materials for advanced lithium batteries, conventional electrolyte materials are facing a lot of challenges. In particular, requirements for electrolytes performance become harsh and complicated as safety problems are seriously emphasized. In this report, we summarized the research trend of electrolyte materials for the electrode materials of lithium rechargeable batteries.

Test Facility of Battery Simulator for Dynamic Characteristics and Safety Evaluation in Lithium-ion Battery (리튬이온 배터리 동특성 및 안전성 평가를 위한 배터리 시뮬레이터 시험설비)

  • Sungin Jeong;Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2024
  • Lithium-ion batteries are used in many fields due to their high energy density, fast charging conditions, and long cycle life. However, overcharging, over-discharging, physical damage, and use of lithium-ion batteries at high temperatures can reduce battery life and cause damage to people due to fire or explosion due to damage to the protection circuit. In order to reduce the risk of these batteries and improve battery performance, the characteristics of the charging and discharging process must be analyzed and understood. Therefore, in this paper, we analyze the charging and discharging characteristics of lithium-ion batteries using a battery charger and discharger and simulator to reduce the risk of loss of life due to overcharge and overdischarge, as well as casualties from fire and explosion due to damage to the protection circuit.

Technology Trends in Post-Lithium Secondary Batteries (포스트 리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

Remaining Useful Life of Lithium-Ion Battery Prediction Using the PNP Model (PNP 모델을 이용한 리튬이온 배터리 잔존 수명 예측)

  • Jeong-Gu Lee;Gwi-Man Bak;Eun-Seo Lee;Byung-jin Jin;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1151-1156
    • /
    • 2023
  • In this paper, we propose a deep learning model that utilizes charge/discharge data from initial lithium-ion batteries to predict the remaining useful life of lithium-ion batteries. We build the DMP using the PNP model. To demonstrate the performance of DMP, we organize DML using the LSTM model and compare the remaining useful life prediction performance of lithium-ion batteries between DMP and DML. We utilize the RMSE and RMSPE error measurement methods to evaluate the performance of DMP and DML models using test data. The results reveal that the RMSE difference between DMP and DML is 144.62 [Cycle], and the RMSPE difference is 3.37 [%]. These results indicate that the DMP model has a lower error rate than DML. Based on the results of our analysis, we have showcased the superior performance of DMP over DML. This demonstrates that in the field of lithium-ion batteries, the PNP model outperforms the LSTM model.

Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping

  • Song, Jun-Ho;Bae, Joongho;Lee, Ko-woon;Lee, Ilbok;Hwang, Keebum;Cho, Woosuk;Hahn, Sang June;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.124-128
    • /
    • 2018
  • Titanium doping is employed to enhance the structural strength of a high-Ni layered cathode material in lithium ion batteries during high temperature cycling. After Ti-doping, the external morphology remains similar, but the lattice parameters of the layered structure are slightly shifted toward larger values. With application of the prepared materials as cathodes in lithium-ion batteries, the initial capacities are similar but the cycling performance at $25^{\circ}C$ is enhanced by Ti-doping. During high temperature cycling at $60^{\circ}C$, furthermore, highly improved capacity retention is achieved with the Ti-doped material (95% of initial capacity at 50th cycles), while cycle fading is accelerated with the bare electrode. This enhancement is attributed to better retention of the compressive strength of the particles and retarded crack formation within the particles. In addition, impedance increase is reduced in the Ti-doped electrode, which is attributed to an improvement in the structural strength of the high-Ni cathode material with Ti-doping.

Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries (리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성)

  • Kim, Il Jin;Kim, Ki Su;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-309
    • /
    • 2020
  • In this study, a series of ionic liquids based electrolytes for lithium batteries were prepared by mixing the anion functionalized ionic liquid, [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite), with the lithium salt, LiTf2N (lithium bis(trifluoromethanesulfonyl)imide), and the concentration of lithium salt was varied between 0 and 3.0 molar ratio. We observed the ionic mixtures became opaque and spontaneously aggregated to form a thermotropic ionic liquid crystal. Extensive spectroscopic examinations of the ionic liquid crystals were carried out to investigate their self-organized structures and the ion transport behavior depending on the concentration of lithium salt. An increase in the ionic conductivity was observed for the ionic liquid crystals related to the ability to form ion diffusion pathways along the ordered structures, resulting in improved electrochemical performances of lithium batteries.

Polarization Behavior of Li4Ti5O12 Negative Electrode for Lithiumion Batteries

  • Ryu, Ji-Heon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.136-142
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between $Li_2CO_3$ and anatase $TiO_2$ for applications in lithium-ion batteries. The rate capability is measured and the electrode polarization is analyzed through the galvanostatic intermittent titration technique (GITT). The rate characteristics and electrode polarization are highly sensitive to the amount of carbon loading. Polarization of the $Li_4Ti_5O_{12}$ electrode continuously increases as the reaction proceeds in both the charge and discharge processes. This relation indicates that both electron conduction and lithium diffusion are significant factors in the polarization of the electrode. The transition metal (Cu, Ni, Fe) ion added during the synthesis of $Li_4Ti_5O_{12}$ for improving the electrical conductivity also greatly enhances the rate capability.

Internal Structure Optimization to enhance the Thermal Performance of an Air-cooled Lithium-ion Battery Pack (공냉식 리튬 이온 배터리 팩의 열 성능 향상을 위한 내부 구조 최적화)

  • Li, Quanyi;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.54-64
    • /
    • 2021
  • Electric vehicles use lithium-ion battery packs as the power supply, where the batteries are connected in series or parallel. The temperature control of each battery is essential to ensure a consistent overall temperature. This study focused on reducing ohmic heating caused by batteries to realize a uniform battery temperature. The battery spacing was optimized to improve air cooling, and the tilt angle between the batteries was varied to optimize the internal structure of the batterypack. Simulations were performed to evaluate the effects of these parameters, and the results showed that the optimal scheme effectively achieved a uniform battery temperature under a constant power discharge. These findings can contribute to future research on cooling methods for battery packs.