• Title/Summary/Keyword: Lithium storage

Search Result 284, Processing Time 0.024 seconds

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-hwi;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.70-72
    • /
    • 2019
  • For the safe and reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is essential to have accurate information of the battery such as State of Charge (SOC). Many kinds of different techniques to estimate the SOC of the batteries have been developed so far such as the Kalman Filter. However, when it is applied to the multiple number of batteries it is difficult to maintain the accuracy of the estimation over all cells due to the difference in parameter value of each cell. Moreover the difference in the parameter of each cell may become larger as the operation time accumulates due to aging. In this paper a novel Deep Neural Network (DNN) based SOC estimation method for multi cell application is proposed. In the proposed method DNN is implemented to learn non-linear relationship of the voltage and current of the lithium-ion battery at different SOCs and different temperatures. In the training the voltage and current data of the Lithium battery at charge and discharge cycles obtained at different temperatures are used. After the comprehensive training with the data obtained with a cell resulting estimation algorithm is applied to the other cells. The experimental results show that the Mean Absolute Error (MAE) of the estimation is 0.56% at 25℃, and 3.16% at 60℃ with the proposed SOC estimation algorithm.

  • PDF

Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries (리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구)

  • Gang, Myung-Bo;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis (고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구)

  • Donghun Kang;Joowon Im;Minseong Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.

Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries (리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석)

  • Seokil Kim;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.

Advances in Li-ion Batteries

  • Lee, Se-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • Efficient and durable electrical energy storage is one of the major factors limiting the wide-spread adoption of renewable energy. Since lithium-ion batteries (LIBs) were first commercialized in the early 1990s, LIBs have emerged as an important energy storage device for portable electronics. LIBs are very desirable because of their high energy storage per volume and per mass. However, LIBs with high energy and power as well as higher stability are needed for their use in a variety of energy storage applications such as MEMS devices, PDA, plug-in hybrids, all-electric vehicles and large scale utility systems. In this talk, I will discuss present energy perspective, especially energy storage and its role in renewable energy. After that I will discuss the recent advances in nanostructured materials and interface engineering that have led to the achievement of improved Li-ion batteries. Finally I will talk aboutcritical issues that need to be addressed to obtain further improvements in Li-ion batteries.

  • PDF

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.