• Title/Summary/Keyword: Lithium battery waste

Search Result 54, Processing Time 0.022 seconds

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Fabrication of Nano Porous Silicon Particle with SiO2 Core Shell for Lithium Battery Anode (리튬 배터리 음극용 SiO2 코어 쉘을 갖춘 나노 다공성 실리콘 입자 제조)

  • Borim Shim;Eunha Kim;Hyeonmin Yim;Won Jin Kim;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.370-376
    • /
    • 2024
  • In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.

A review on Separation Technologies for Lithium Recovery from Waste Solutions in Recycling Process of Waste Battery (폐배터리 재활용 공정 폐액 중 리튬 회수를 위한 분리 기술 고찰)

  • Song, Daesung;Kim, Eunkyu;Vu, Thang-Toan
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.473-477
    • /
    • 2022
  • In this study, candidate technologies for lithium recovery from the process waste liquid generated in the waste battery recycling process were reviewed, and technologies applicable to the process from the commercialization point of view were reviewed from a qualitative point of view. The evaporation method is difficult to apply because it requires a large-scale land and shows a low recovery rate due to the loss of Li during the concentration process. In the case of precipitation, a commercially available technology shows a high recovery rate due to the high Li/Na selectivity of phosphoric acid, but there are disadvantages in that the process is complicated due to the use of expensive phosphoric acid, requiring a recovery step, and continuous operation is impossible because solids are handled in the Li concentration process. In the case of solvent extraction, if we find an inexpensive extractant with high Li/Na selectivity, continuous operation is possible with the method used in extraction of other metals in the previous step, and when Li is concentrated, continuous operation is possible because it is in a liquid state. If it shows a similar recovery rate compared to precipitation technology, commercialization will be the most likely.

Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수)

  • Lee, So-Yeon;Lee, Dae-Hyeon;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.26-33
    • /
    • 2022
  • Owing to the demand for lithium-ion batteries, the recovery of valuable metals from waste lithium-ion batteries is required in future. A pyrometallurgical treatment is appropriate for recycling a large number of waste lithium-ion batteries, but Li loss to slag and dust present a significant challenge. This research investigated carbonation roasting and water leaching behaviors in Li-ion batteries by graphite addition to recover Li from the NCM-based cathode materials of waste Li-ion batteries. When 10 wt% of graphite was added, CO and CO2 gases were emitted with a rapid weight reduction at apporoximately 850 K, when heated in Ar and CO2 atmosphere. After the rapid weight reduction, NCM was decomposed and reduced to metal oxides and pure metals. In the carbonation roasting of black powder (NCM+graphite), O2 is generated via the decomposition of NCM, and an oxides, such as Li2O and NiO were were also generated. Subsequently, Li2O reacts with CO2 to generate Li2CO3, and a part of NiO was reduced by graphite to produce metal Ni. In addition, up to 94.5 % Li2CO3 with ~99.95 % purity was recovered via water leaching after carbonation roasting.

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery (해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교)

  • Kim, Kyoungho;Na, Young Soo;Lee, Man Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • As emerging the new electric devices, the commercial lithium ion batteries have faced with various challenges. In this regard, many efforts to solve challenges have been tried. In order to solve the above problems in terms of development of a new secondary battery, we successfully demonstrated the two electrocatalysts, such as MCWB and PPY hydrogel, PPY hydrogel and MCWB showed typical H3-type BET isotherm, indicating that micro- and mesopores existed. Especially, in terms of voltage efficiency at the first cycle, PPY hydrogel was higher than that of MCWB, but lower than that of PtC. More interestingly, the PPY hygrogel based seawater battery exhibited charge-discharge reversibility during 20 cycles, and the voltage efficiencies ranged from 70.32 % to 77.35 % in cyclic performance test.

A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery (폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구)

  • Kim, BoRam;Kim, Dae-Weon;Kim, Tae-heon;Lee, Jae-Won;Jung, Hang-chul;Han, Deokhyun;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • A metal salt solution was prepared from valuable metals (Ni, Co, Mn) recovered from a scrap of waste lithium secondary batteries, and an NCM811 precursor was synthesized from the solution. The effect on precursor formation according to reaction time was confirmed by SEM, PSA, and ICP analysis. Based on the analysis results, the electrochemical properties of the synthesized NCM811 precursor and the commercial NCM811 precursor were investigated. The Galvano charge-discharge cycle, rate performance, and Cycle performance were compared, and as a result, there was no significant difference from commercial precursors.