• 제목/요약/키워드: Lithium battery anode

검색결과 345건 처리시간 0.038초

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery)

  • 지성화;조완택;김현효;김효진
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

은 담지한 혹연을 부극 활물질로 이용한 Li ion 2차전지의 전기화학적 특성 연구 (The Electrochemical properties of Lithium ion Secondary Battery using Ag-deposited graphite anode)

  • 김상필;조정수;박정후;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 1998
  • New Ag-deposited graphite anodes were developed using wet chemical reduction methods for depositing Ag metal onto graphite particles. In this paper, we investigated X-ray diffraction pattern and charge-discharge behavior for Ag-deposited graphite anode. The Lithium ion cello using Ag-deposited graphite anode showed a high average discharge voltage of 3.6∼3.W and a excellent cycle ability than that of conventional graphite. Little capacity loss in this battery may be due to the highly durable Ag-deposited graphite anodes.

  • PDF

Nanostructured Electrode Materials for Rechargeable Lithium-Ion Batteries

  • Zhao, Wei;Choi, Woosung;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.195-219
    • /
    • 2020
  • Today, rechargeable lithium-ion batteries are an essential portion of modern daily life. As a promising alternative to traditional energy storage systems, they possess various advantages. This review attempts to provide the reader with an indepth understanding of the working mechanisms, current technological progress, and scientific challenges for a wide variety of lithium-ion battery (LIB) electrode nanomaterials. Electrochemical thermodynamics and kinetics are the two main perspectives underlying our introduction, which aims to provide an informative foundation for the rational design of electrode materials. Moreover, both anode and cathode materials are clarified into several types, using some specific examples to demonstrate both their advantages and shortcomings, and some improvements are suggested as well. In addition, we summarize some recent research progress in the rational design and synthesis of nanostructured anode and cathode materials, together with their corresponding electrochemical performances. Based on all these discussions, potential directions for further development of LIBs are summarized and presented.

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

${\cdot}$부극 재료의 특성에 따른 리튬이온전지의 용량설계 (Capacity Design of Lithium Ion Battery Based on the Characteristics of Materials)

  • 문성인;도칠훈;윤성규;염덕형
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 1998년도 전지기술 심포지움
    • /
    • pp.7-27
    • /
    • 1998
  • In order to design capacity of lithium ion battery, some calculations were carried out based on the characteristics of materials by the given battery shape and dimension. The principle of design was built by the interpretation of the correlation of material, electrochemical and battery factors. Parameters of materials are fundamental physical properties of constituent such as cathode. separator, anode, current collectors and electrolyte. Electrochemical factor includes potential pattern as a function of specific capacity, specific discharge capacity(or initial irreversible specific capacity or Ah efficiency) as a function of specific charge capacity and material balancing. Parameters of battery are dimension, construction hardware and performance. Battery capacity was simulated for a lithium cobalt dioxide as cathode and a hard carbon as anode to achieve 1100 mAh for the charge limit voltage of 4.2V, the weight ratio(+/-) of 2.4 and ICR18650. A fabricated test cell (ICR18650) which have weight ratio(+/-) of 2.4 discharged to 1093 mAh for the charge limit voltage of 4.2V. The sequential discharge capacity show good correspondence with designed capacity.

  • PDF

리튬 이차전지용 금속이 담지된 다공성 실리콘 음극물질의 전기화학적 특성 (Electrochemical Characteristics of Porous Modified Silicon Impregnated with Metal as Anode Materials for Lithium Secondary Batteries)

  • 장은정;전법주
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.353-363
    • /
    • 2012
  • The relationship between the diffusivity and electrochemical characteristics of lithium secondary battery with the modified Si anode material prepared in HF/$AgNO_3$ solution was investigated. The crystallographic structure and images of the modified porous Si and modified Si/Cu was examined using the X-ray diffraction, BET and SEM. To examine the effect of metal composite and pore size distribution according to chemical etching on the electrochemical characterization, the electrodes for half cells were prepared with the modified Si, modified Si/Cu, and modified Si/Cu annealed with $600^{\circ}C$. Our results showed that the chemical diffusivity of lithium ions was related to structure and resistance of Si/Cu composite anode material. The lithium diffusivity in modified silicon compound calculated from the CV was at the range of $1{\times}10^{-12}$ to $9{\times}10^{-16}cm^2/s$. The effects of modified silicon structure and resistance on the cycling efficiency were significant.

산처리에 의해 개질된 리튬이온 이차전지용 흑연 전극의 특성 (Performance of Graphite Electrode Modified with Acid Treatment for Lithium Ion Secondary Battery)

  • 김명수;문승환;김문걸;김택래;함현식;박홍수
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.142-150
    • /
    • 2005
  • The natural graphite particles A and heat-treated graphite particles B at $1800\;^{\circ}C$ after pitch-coating were used as the anode base materials for lithium ion secondary battery. In order to improve the performance of anode materials, the base anode materials were treated with various acids. With the acid treatments of 62% $HNO_3$ and 95% $H_2SO_4$ aqueous solution, the specific surface area and electrical conductivity of base anode materials were increased, and the initial charge-discharge capacity and cycle performance were improved due to the elimination of structural defects.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.