• Title/Summary/Keyword: Lithium

Search Result 2,862, Processing Time 0.03 seconds

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Extractive Metallurgy of Lithium (리튬의 제련기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.3-15
    • /
    • 2022
  • Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

A Case of Nephrogenic Diabetes Insipidus with Delirium and Hypernatremia due to Lithium Medication (Lithium 투약도중 과나트륨혈증과 섬망을 동반한 신장성 뇨붕증 환자 1례)

  • Chung, Hyo-Kyung;Lee, Young-Ho;Chung, Young-Cho
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.4 no.1
    • /
    • pp.91-97
    • /
    • 1996
  • Lithium is a widely used important drug in the treatment of manic-depressive illness and its prevention of relapse. However, this drug has a Low therapeutic index, therefore, it has many attendant side effects. The most prevalent renal effect of lithium is impairment of concentrating ability and this defect appeared into overt polyuria. A renal lesion is confined to the collecting tubule and 12-20% of patients taking lithium suffer from nephrogenic diabetes insipidus. This nephrogenic diabetes insipidus causes the states of extracellular fluid depletion, hypernatremia and precipitates lithium intoxication. In such situation, symptoms of nephrogenic diabetes insipidus and lithium intoxication are very similar, so we should be very cautious to discriminate them. We herein report a patient characterized by a prolonged stuporous state, hypernatremia and severe nephrogenic diabetes insipidus during lithium therapy.

  • PDF

Effects of Co-solvent on Dendritic Lithium Growth Reaction (리튬 덴드라이트의 성장 반응에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 2013
  • This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in 1 mol $dm^{-3}$ (M) $LiPF_6$ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. The DME concentration was found to have a significant effect on the reactions occurring at the electrode. The poor cycleability of the electrodes in the pure PC solution was improved considerably by adding small amounts of DME. This results suggested that the dendritic lithium growth could be suppressed by using co-solvents. After hundredth cycling in the 1 M $LiPF_6$/PC:DME (67:33) solution, almost no dead lithium has been found from the disassembled cell, resulting from suppression of dendritic lithium growth. Scanning electron microscopy revealed that dendritic lithium formation was greatly affected by the ratio of DME. Raman spectroscopy results suggested that the structure of solvated lithium ions is a crucial important factor in suppressing dendritic lithium formation.

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

The Preparation Characteristics of Vanadium-based Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 양극의 제초 특성)

  • ;;N. Oyama
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.395-398
    • /
    • 1998
  • Lithium insertion has been studied in a number of vanadium oxides with special regard to their application as the active materials in rechargeable lithium cells. Very high stoichiometric energy densities for lithium insertion are found for several of these materials. Some vanadium oxides, e.g. V$_2$ $O_{5}$ and V$_{6}$ $O_{13}$, are now being used in commercially developed rechargeable Li batteries. Another material which is receiving remarkable attention for this kind of cells is LiV$_3$ $O_{8}$. In variety of ternary lithium-vanadium oxides, the lithium content can be varied between certain limits without major changes in the vanadium oxygen lattice. In our worts, the oxides which do net form these thermodynamically stable bronzes can still accommodate large amounts of lithium at ambient temperature, forming kinetically stable insertion compounds. These compounds owe their existence to the whereas lithium is easily introduced into these open structures. The oxides investigated are rather poor electronic conductors; the conductivity decrease with increase in the lithium content. Improvements in the electrode fabrication technique are needed to alleviate this Problem.oblem.

  • PDF

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.