• Title/Summary/Keyword: Lithic Tuff

Search Result 16, Processing Time 0.026 seconds

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.

Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea (전남(全南) 고흥반도(高興半島)에 분포(分布)하는 화산암류(火山岩類)의 화산층서(火山層序) 및 암석학적(岩石學的) 연구(硏究))

  • Yun, Sung Hyo;Hwang, In Ho
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.335-348
    • /
    • 1988
  • The author aimed to describe the volcano-stratigraphy and petrology of the volcanic mass in the Koheung peninsula, South Cheolla province. The volcanic mass is composed of the volcanics and intrusives of late Cretaceous which extruded the Pre-cambrian metamorphic(Jirisan gneiss complex) and the early Cretaceous sedimentary(Duwon Formation) basement. The volcanic pile consists of, in ascending order, Bibongsan andesite, Koheung tuff and breccia, and Palyeongsan welded tuff, and are intruded by ring intrusives( intrusive breccia, andesite porphyry, intrusive rhyolite and fine-grained quartz-diorite) and central pluton(diorite, quartz monzodiorite, biotite granite and micrographic granite). Bibongsan andesite mainly consists of andesite tuff and lava. Koheung tuff consists of alternation of fine tuff, coarse tuff and lapilli tuff, and Palyeongsan welded tuff which overlies Koheung tuff, comprises K-feldspar and quartz phenocrysts, elongated brown fiamme, lithic fragments in matrix of devitrified brown glass shards, and mainly consists of rhyodacite to rhyolite vitric ash-flow tuff. The results of petrochemical studies of the igneous rocks suggest that the rocks were a serial differentiational products of fractional crystallization of calc-alkaline magma series. This study reveals that the volcanic mass in this area is inferred to the remnant of the resurgent cauldron, measuring 30 by 25 km in diameter. The cauldron block was lowered at least 1,000 m by ring fault displacement.

  • PDF

Determination of Flow Direction from Flow Indicators in the Muposan Tuff, Southern and Eastern Cheongsong, Korea (청송 남.동부 무포산응회암의 흐름 지시자로부터 유향 결정)

  • Ahn, Ung-San;Hwan, Sang-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.319-330
    • /
    • 2007
  • The Muposan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northeastern Kyeongsang Basin. The Muposan Tuff commonly belongs to tuff field according to the granulometric classification and to vitric tuffs according to the constituent classification. The tuffs are mostly densely to partially welded to include very flattened and sometimes stretched pumices and shards, and involve several flow indicator and lateral gradings in maximum diameter and content of their constituents. Movement pattern from flow lineation, lithic and pumice imbrications, asymmetric flow folds, and lateral gradings in maximum diameter and content of their constituents indicate that the Muposan Tuff had a source from the southeastern part.

Flow Directions and Source of the Dongmakgol Tuff in the Cheolwon Basin, Korea (철원분지 동막골응회암의 유향과 공급지)

  • Hwang, Sang-Koo;Kim, Jae-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • The Dongmakgol Tuff is a stratigraphic unit which is composed of voluminous ignimbrites in the Cheolwon basin. The ignimbrites belong to pumice-rich vitric tuffs that show eutaxitic to parataxitic fabrics from fiamme or pumice clasts. They are almost densely welded and strongly flattened, but often parallel aligned and stretched. Also they exhibit flow indicators such as flow lineations, imbrications, tensional cracks and boudins from their alignment and/or elongation, and lithic and pumice clasts show lateral grading in their average maximum diameter. Flow direction map from the lineations, asymmetric structures and lateral grading diagram indicate that the Dongmakgol Tuff has a source from its southwestern part near a boundary between southern Dongmakri and northern Gomunri, and is considered that the ignimbrites took emplacement processes of laminar flows during the final stage of flowage and the flow lineations are from the result of shear stress during that times.

Petrological Properties of Flat Stones from the Obongsan Mountain Quarry Used for Flooring in Ondol

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.380-390
    • /
    • 2021
  • The purpose of this study is to scientifically analyze the rocks of the Obongsan Mountain in Boseong, Jeollanam-do, which contains the largest extant quarry of Gudlejang (flat stone for heating) in Korea, and to scientifically determine the petrological characteristics of the area and the reasons for its use as a quarry. The rocks in the quarry are composed of light-green lapilli tuff, containing various types of lithic fragments and crystalline fragments in a vitreous matrix consisting of the fine feldspar crystals. The main constituent minerals were identified as quartz, plagioclase, mica, chlorite and opaque minerals. When the major element compositions were plotted on a Na2O+K2O versus SiO2 diagram, all samples were situated in the same compositional area as rhyolite. In addition, the result of magnetic susceptibility measurement also showed a similar range of values, of 1.30 ~ 4.85 (×10-3 SI), indicating that samples were fractionated from the same magma. Both rock types showed similar apparent specific gravity values of 2.32 ~ 2.60. In particular, plate-shaped joints are well developed in the Obongsan Mountain area, and many areas exhibit talus terrain. In conclusion, the rocks of this area is interpreted to used for a site of Gudlejang quarrying, because the rocks were easily obtainable due to the terrain characteristics, and their petrological properties made them suitable for use as Gudlejang stone.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Evaluation of Nondestructive Diagnosis and Material Characteristics of Stone Lantern at Damyang Gaeseonsaji Temple Site in Korea

  • Lee, Chan Hee;Araki, Naruto
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.279-293
    • /
    • 2019
  • The stone lantern of the Damyang Gaeseonsaji temple site is a cultural heritage built during the Unified Silla period (AD 868). The reason for its value as a cultural property is due to wittern the background and the period created on inscription of the lamp stone engraved by letters. The stone lantern consists of two types of lithic tuffs for the 23 original properties, the replaced stones in 1991, and the biotite granite for its ground stones replaced in 2005. The lithic tuffs selected as the replacement parts in 1991 and 2017 have been examined and got to properties of hardly exposure moisture as well as very similar geochemical characteristics. There were various types of physical deterioration of the stone properties and structural cracks; in particular, on the northern side of the stylobates. Chemical and biological deterioration can be identified as black, white, and brown discolorations as well as by the presence of lichens, bryophytes, and herbaceous plants. In the evaluation of the physical properties of the stone lantern, the mean and maximum ultrasonic velocities were found to be similar in each direction. However, the lowest velocity on the east and south sides were found to be lower than those of other stone properties. It was found that physical damage to the stylobates resulted from water expansion in a freeze-to-thaw phenomena related to water content. Therefore, dismantling repair was carried out in the protection facility to restrict further water supply to the stone as much as possible.

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea (울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석)

  • Hwang, Sang Koo;Lee, So-Jin;Han, Kee Hwan
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.513-527
    • /
    • 2018
  • We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.