• Title/Summary/Keyword: Liquid-Liquid Spray

Search Result 1,307, Processing Time 0.021 seconds

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors (오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성)

  • Jung, K.H.;Khil, T.O.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

A Study on the Visualization of Electrohydrodynamic Spray Flow in High DC Voltages (고전압 직류전기장에서 전기수력학적 분무 유동 가시화에 관한 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.131-139
    • /
    • 2006
  • An experimental study was performed to investigate the liquid breakup and atomization characteristics in electrohydrodynamic atomization according to the changing of experimental parameters such as nozzle size, fluid flow, and electrical intensity. An original electrohydrodynamic atomizer equipment was designed and manufactured for the analysis of spray visualization and the exploration of relationship between applied power and the behavior of liquid atomization. The image processing technique by using the back-illumination method was applied to visualize the distilled liquid breakup process and to examine the variation of the droplet size distribution. The results show that the spray modes of electrohydrodynamic atomization are closelyconnected by the strength of the electric stresses at the surface of the liquid film and the kinetic energy of the liquid jet leaving the needle tip.

  • PDF

Spray characteristics of swirl injector using liquid film thickness measurement (액막두께 측정방법을 이용한 스월 인젝터의 분무특성 연구)

  • Kim Sung-Hyuk;Kim Dong-Jun;Kim Byung-Sun;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • By using liquid film thickness measurement the spray characteristics of swirl injector according to the geometric parameters were investigated in this paper. A specially designed injector having a variable backhole length, swirl chamber length, orifice length was used to measure the liquid film thickness. The spray characteristics of the injector were represented by mass flow rate according to the injection pressure, liquid film thickness in the lower orifice, spray cone angle.

  • PDF

An experimental study on the mixing of evaporating liquid spray in a duct flow (덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구)

  • Kim, Y.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2006
  • High temperature furnaces such as power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agent is injected into the flue gas flow to activate do-NOx system. Almost SCR system adopt vaporized ammonia injection system. Vaporizer, dilution system and additional space are needed to gasify and inject ammonia. Liquid spray injection system can simplify and economize post-treatment system of flue gas. In this study, mixing caused by gas or liquid injection of reducing agent into flue gas duct was investigated experimentally. Carbonated water was used as tracer and simulated agent and mixing of liquid spray in a duct flow was studied. To achieve that, the angle of attack of static mixer is simulated and $CO_2$ concentration is measured.

  • PDF

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

A Study of the Behavior of Liquid Phase Spray Considering Critical Condition of the Fuel (연료의 임계조건을 고려한 디젤 액상분무거동에 관한 연구)

  • Park, Jong-Sang;Kim, Si-Pom;Chung, Sung-Sik;Ha, Jong-Yul;Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.467-472
    • /
    • 2007
  • In this study the penetration distance of liquid phase fuel(i.e. liquid phsae length) was investigated in evaporative field. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. For accurate investigation, images of the liquid and vapor phase regions were recorded using a 35mm still camera and CCD camera, respectively. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume chamber under high pressure and temperature in order to visualize the spray phenomena. Experimental results indicate that the liquid phase length decreased down to a certain constant value in accordance with increase in the ambient gas density and temperature. The constant value, about 40mm in this study the, is reached when the ambient density and temperature of the used fuel exceed critical condition.

Atomization Characteristics of shear coaxial twin fluid injector (동축형 인젝터의 미립화 특성)

  • Han, J.S.;Kang, G.T.;Kim, Y.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement (발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화)

  • Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.

A Study on the Characteristics of the Spray Produced by Two Impinging Jets (충돌제트로 생성되는 분무의 특성에 관한 연구)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF