• 제목/요약/키워드: Liquid transfer

검색결과 1,331건 처리시간 0.024초

마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 - (Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer -)

  • 곽경민;장재식;배철호;정모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF

액-액 교반조내에서의 물질이동용량계수 및 액적경의 특성 (Characteristic of Mass Transfer Volumetric Coefficient and Sauter Mean Diameter in a Liquid-Liquid Agitated Vessel)

  • 이영세
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.913-922
    • /
    • 2012
  • 환경 및 화학공업에서 액-액 교반조내의 특성을 파악하는 일은 매우 중요하다. 액적 부근의 물질이동용량계수 $k_La$와 Sauter 평균경 $d_{32}$은 에스테르의 알칼리 가수분해반응을 이용하여 임펠러 부착위치나 액높이를 변화시켜 측정하였다. 그 결과 아래와 같은 이들의 양호한 상관식을 얻었다. $$d_{32}=0.270\(\frac{{\sigma}^{0.6}}{{\rho}^{0.2}P^{0.4}_{Vi}}\)k_La=0.49\(\frac{6{\phi}D_A}{d^2_{32}}\)\(\frac{P_Vd^4_{32}}{{\rho}v^3}\)^{0.193}Sc^{1/3}$$.

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향 (Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.

이액상계를 이용한 토양슬러리 반응기에서의 PAH 거동 특성

  • 이재영;백기태;조현정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.144-147
    • /
    • 2003
  • In this study, the mass transfer behaviors of phenanthrene, anthracene, and pyrene in soil slurry reactor (SSR) using two-liquid phase (TLP) system were investigated. The mass transfer ratio and rate of PAH in the TLP system using light paraffine oil, which has the highest solubility of PAH, were influenced by the amount of light paraffine oil and mixing speed. When the amount of light paraffine oil decreased from 15 % to 2.5 % (v/v), the mass transfer ratio of anthracene decreased significantly compared with that of phenanthrene and pyrene. As mixing speed increased, the initial mass transfer rate of PAH within 1 day was enhanced. However, each final mass transfer ratio of three PAHs after 5 day was similar irrespective of mixing speed.

  • PDF

GMAW의 금속이행에 영향을 주는 변수연구를 위한 계측 시스템과 조건해석 (Study of variables influencing on the metal transfer in GMAW)

  • 이세헌
    • Journal of Welding and Joining
    • /
    • 제11권1호
    • /
    • pp.73-79
    • /
    • 1993
  • The phenomenon of metal transfer has been investigated for different transfer modes using a digital high speed motion analyzer and an arc shadow-graphing system based on a laser source and related optical system. It was observed that the pinch instability phenomenon did not occur for the globular transfer mode, since the liquid globule was then spherical rateher than a cylindrical liquid bar. On increasing the ratio of carbon dioxide to argon, the transition current from globular to spray transfer generally increased, but it is interesting that the transition was observed to occur at the lowest current in a 5% CO$_{2}$-95% argon gas mixture. For pure carbon dioxide and helium shielding gases, the drop frequency increased slowly with increasing current. At high currents or an argon based shielding gas, the length of liquid bar decreased as the carbon dioxide content increased. The acceleration of a droplet within the arc was determined using the gas drag force theory and was found to be greater than the experimental results.

  • PDF

액체중의 원형 실린더 주위에서의 강제대류 층류 열전달에 관한 수치해석적 연구 (A Numerical Study on the Laminar convective Heat Transfer around a Circular Cylinder in a Uniform Cross Flow of Liquid)

  • 강신형;홍기혁
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.26-36
    • /
    • 1996
  • Many researches were carried out to estimate heat transfer rate on a circular cylinder in a uniform flow. Various empirical correlations were suggested in the past through experimental studies, however there are considerable discrepancies in the estimated values of heat transfer coefficient. The effect of fluid physical properties on the forced convective heat transfer between a circular cylinder and the external flow was numerically investigated in the present study, The flow and temperature fields were solved using a Finite Volume Method over a wider range of Prandtl number(0.7-40,000) than existing correlations. The cold as well as the hot cylinders in the uniform liquid flow of constant temperature were investigated. A unified correlation was obtainde for both cases.

  • PDF

Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구 (Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger )

  • 최안철;이성우;신익호;최성웅
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

과도액정기법을 이용한 열전달 측정 및 수치해석 (Heat Transfer Measurement Using a Transient Liquid Crystal Technique and Numerical Anlysis)

  • 홍철현;이기백;양장식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.68-77
    • /
    • 2005
  • A transient liquid crystal technique has become one of the most effective ways in measuring the local heat transfer coefficients on the entire surface. The key Point of this technique is to convert the inlet flow temperature into an exponential temperature profile using a mesh heater. In order to verify the validity of this technique. the heat transfer characteristics on the wall surface by a pair of longitudinal vortices is investigated experimently and numerically. A standard ${\kappa}-{\varepsilon}$ is used for the numerical analysis of turbulent flow field. It is found from experiment and numerical analysis that two peak values exist over the whole domain. as the longitudinal vortices move to the farther downstream. these peak values decrease and the dimensionless averaged Nusselt number with the lapse of time is maintained nearly at constant values. The experiment results obtained from the present experiment in terms of the transient liquid crystal technique are in good agreement with the numerical results. Therefore, the transient liquid crystal technique developed for the measurement of heat transfer coefficient is proved to be a valid method.