• Title/Summary/Keyword: Liquid transfer

Search Result 1,331, Processing Time 0.024 seconds

A Study on the Improvement of Heat Transfer Performance in Low Temperature Closed Thermosyphon

  • Han, Kyu-Il;Yee, Seok-Su;Park, Sung-Hyun;Lee, Suk-Ho;Cho, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1102-1111
    • /
    • 2002
  • The study focuses on the heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal grooves. Three different working fluids(distilled water, methanol, ethanol) are used with various volumetric liquid fill charge ratio from 10 to 40%. Additional experimental parameters such as operating temperature and inclination angle of zero to 90 degrees are used for the comparison of heat transfer performance of the thermosyphon. Condensation and boiling heat transfer coefficients, heat flux are obtained using experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, liquid fill charge ratio, number of grooves and inclination angle are very important factors for the operation of thermosyphons. The relatively high rate of heat transfer is achieved when the thermosyphon with internal grooves is used compared to that with plain tube. The optimum liquid fill charge ratio for the best heat transfer performance lies between 25% and 30%. The range of the optimum inclination angle for this study is 20$^{\circ}$~30$^{\circ}$ from the horizontal position.

Performance characterization of liquid desiccant system with extended surface (확장표면을 적용한 액체식 제습시스템의 성능특성에 관한 연구)

  • Jang, Young-Soo;Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.639-644
    • /
    • 2009
  • This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.

  • PDF

Automated Verification of Livestock Manure Transfer Management System Handover Document using Gradient Boosting (Gradient Boosting을 이용한 가축분뇨 인계관리시스템 인계서 자동 검증)

  • Jonghwi Hwang;Hwakyung Kim;Jaehak Ryu;Taeho Kim;Yongtae Shin
    • Journal of Information Technology Services
    • /
    • v.22 no.4
    • /
    • pp.97-110
    • /
    • 2023
  • In this study, we propose a technique to automatically generate transfer documents using sensor data from livestock manure transfer systems. The research involves analyzing sensor data and applying machine learning techniques to derive optimized outcomes for livestock manure transfer documents. By comparing and contrasting with existing documents, we present a method for automatic document generation. Specifically, we propose the utilization of Gradient Boosting, a machine learning algorithm. The objective of this research is to enhance the efficiency of livestock manure and liquid byproduct management. Currently, stakeholders including producers, transporters, and processors manually input data into the livestock manure transfer management system during the disposal of manure and liquid byproducts. This manual process consumes additional labor, leads to data inconsistency, and complicates the management of distribution and treatment. Therefore, the aim of this study is to leverage data to automatically generate transfer documents, thereby increasing the efficiency of livestock manure and liquid byproduct management. By utilizing sensor data from livestock manure and liquid byproduct transport vehicles and employing machine learning algorithms, we establish a system that automates the validation of transfer documents, reducing the burden on producers, transporters, and processors. This efficient management system is anticipated to create a transparent environment for the distribution and treatment of livestock manure and liquid byproducts.

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

An Analysis of Heat Transfer and Pressure Drop Characteristics for Optimum Design of Cryogenic Heat Exchanger used for Liquid Nitrogen Cooling (액체질소 냉각용 극저온 열교환기의 최적설계를 위한 열전달 및 압력강하 특성 분석)

  • Ko, Ji Woon;Jeon, Doong Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • In this paper, analytical studies were conducted to obtain optimal design factors and analysis parameters of liquid nitrogen cooling exchanger applied in cryogenic refrigerator. The target value of heat transfer rate was more than 1 kW and pressure drop was less than 40 kPa. Design factors of cryogenic heat exchanger included width of channel and configuration of paths. Analytical factors of liquid nitrogen cooling exchanger included temperatures of coolant header surface and inlet liquid nitrogen. The width and number of channels in the design parameters were 0.0050~0.0150 m and 4~8, respectively. The configuration of channel path was 4 ways. Temperatures of coolant header surface and inlet liquid nitrogen in analytical parameters were 74 to 78K and 82 to 86K, respectively. As result, the design factor and analysis parameter satisfying the target values were obtained. The biggest heat transfer rate was 1.36 kW with pressure drop of 32.26 kPa.

Thermal Stress Analysis of the Support System in Cryogenic Liquid Hydrogen Storage Tank (극저온 액체수소 저장탱크 지지시스템의 열응력 해석)

  • Park, Dong-Huen;Yun, Sang-Kook;Lee, Jung-Hyan;Jo, Won-Il;Baek, Young-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.239-245
    • /
    • 2005
  • The reduction of heat transfer rate to the stored liquid hydrogen from outside condition is extremely important to keep the liquid hydrogen longer. In this paper the highly efficient support system for the liquid hydrogen storage vessel was newly developed and analysed. The support system was composed of a spherical ball in the center of supporter to reduce the heat transfer area, with its above and below supporting blocks which are the SUS and PTFE blocks inserted in the SUS tube. The heat transfer rate and temperature distribution of the support system were evaluated by FLUENT, and the thermal stress and strain were estimated by ANSYS software. The results showed that the heat transfer rate from outer vessel to inner one was extremely decreased compared with the common method which is simply SUS tubes inserted between inner and outer tanks. The thermal stress and strain were obtained well below the limited values. As a result, it was the most efficient support system of storage vessel for liquid hydrogen and most cryogenic fluids.

  • PDF

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Mechanisms of Convective and Boiling Heat Transfer Enhancement via Ultrasonic Vibration (초음파 진동에 의한 대류 및 비등 열전달 촉진 원리에 관한 연구)

  • Kim, Yi-Gu;Kim, Ho-Young;Kang, Seoung-Min;Kang, Byung-ha;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.612-619
    • /
    • 2003
  • This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when tile local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism.