• Title/Summary/Keyword: Liquid transfer

Search Result 1,332, Processing Time 0.024 seconds

Nucleate Boiling Heat Transfer from Micro Finned Surfaces with Subcooled FC-72 (FC-72를 이용한 마이크로 핀 표면에서의 핵비등 열전달)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.410-415
    • /
    • 2008
  • To evaluate the performance of nucleate boiling heat transfer between a plain and micro-fin surfaces, the experimental tests have been carried out under various conditions with fluorinert liquid FC-72, which is chemically and electrically stable. Two kinds of micro fins with the dimensions of $200{{\mu}m}{\times}20{{\mu}m}$ and $100{{\mu}m}{\times}10{{\mu}m}$ (width x height) were fabricated on the surface of a silicon chip. The experiments were performed on the liquid subcooling of 5, 10 and 20K under the atmospheric condition. The presented data showed a similar trend in the comparison with result of Rainey & You. Due to its expanded surface areas, the heat flux properties has been significantly enhanced on micro-fin surface comparing to the plain surface.

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Fundamental study on performance characteristics of a micro heat pipe with triangular cross section (삼각단면 극소히트파이프의 작동특성에 관한 기초 연구)

  • 문석환;김종오;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.176-184
    • /
    • 1999
  • Numerical and experimental studies were performed to examine the characteristics of heat and mass transfer processes for a Micro Heat Pipe(MHP) with a triangular cross-section. Solutions on mass flow rate, pressure variation, and radius of meniscus were obtained using the mathematical model developed by Faghri and Khrustalev. To obtain an increase in capillary limitation, a triangular tube with curved walls was designed and fabricated. The measurement by microscope showed that the radius at corners of the tube was ranging between 0.03-0.05mm. Performance test for MHPs using the triangular tube with curved walls proved a substantial increasement in heat transport limitation, with 4.5W and 2.0W in case of using water and ethanol as a working fluid, respectively. In the previous study by Faghri a limitation of 0.5W was reported for a water MHP with a regular triangular tube.

  • PDF

증발을 고려한 Wafer Spin Coating 박막 예측에 관한 수치 해석적 연구

  • 노영미;임익태;김광선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.20-26
    • /
    • 2002
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be 1-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time various film thickness is analyzed according to the var ious solvent fraction in the coating liquid and in the bulk of the overlying gas and the temperature variation in the liquid film during the spin coating is estimated.

  • PDF

A study on heat transfer during solidification of phase change material on a finned vertical cooling tube (휜붙이 수직냉각관 주위의 상변화물질에서 응고열전달에 관한 연구)

  • 정석주;송하진
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • Experiments were performed to study solidification of phase change material on a finned vertical tube when either conduction In the solid or natural convection in a liquid controls the heat transfer. The liquid was housed in a cylindrical containment vessel whose surface was maintained at a uniform, time-invariment temperature during a data run, and the solidification occurred at a finned and unfinned vertical tube positioned along the axis of the vassel. The phase change material(PCM) employed in this experiment is 99 percent pure n-Octacosan paraffin($C -{28}H_{58}/$). For conduction-controlled and convection-controlled solidification, the enhancement of the solidified mass rate due to finning is great when the solidified layer is thin and decreases as the layer grows thicker. It is studied that the latent energy($E_{\lambda}$) is the largest contributor to the total extracted energy($E_{\lambda} + E_{sl}+E_{s2}$) and the total extracted energy rate at a finned vertical tube is greater than that at a unfinned vertical tube.

  • PDF

Thermodynamic Properties of the Solute Transfer from the Aqueous Acetonitrile Mobile Phase to the Stationary Phase Monitored by HPLC

  • Jeong, Won Jo;Kim, Ji Yeon;Gu, Yun Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.105-109
    • /
    • 2000
  • High-performance liquid chromatography is suitable for getting thermodynamic information about solute-solvent interactions. We used a squalane impregnated $C_{18}$ phase as a presumably bulk-like stationary phase to secure a simple partition mechanism for solute retention in reversed phase liquid chromatographic system. We measured retention data of some selected solutes (benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, phenol, benzylalcohol, phenethylalcohol, benzylacetone, acetophenone, benzonitrile, benzylcyanide) at 25, 30, 35, 40, 45, and 50 $^{\circ}C$ in 30/70, 40/60, 50/50, 60/40 and 70/30 (v/v%) acetonitrile/water eluents. The van't Hoff plots were nicely linear, thus we calculated dependable thermodynamic values such as enthalpies and entropies of solute transfer from the mobile phase to the stationary phase based on more than four retention measurements on different days (or weeks). We found that the cavity formation effect was the major factor in solute distribution between the mobile and stationary phases in the system studied here. Our data were com-pared with some relevant literature data.

Study on the heat transfer in the closed-loop of liquid helium

  • Choi, Y.S.;Kim, D.L.;Yang, H.S.;Lee, B.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.43-45
    • /
    • 2008
  • The thermal characteristics of the helium circulation by a cryocooler are presented. This study is motivated mainly by our recent development of a closed-loop cooling system for Cyclotron K120 superconducting magnets without any replenishment of the cryogen. A channel is attached on the outer surface of the magnet form and the liquid helium passes through inside of the channel in order to cool the super conducting coils indirectly. A two-stage cryocooler as a heat sink is located at the top to recondense helium coming from the superconducting magnet form. The heat transfer in the natural circulation loop is discussed and the main dimensions of cooling system are determined.

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

In Vitro Micropropagation of Chinese Yam (Dioscorea opposita Thunb.) through the Culture of Micro-tuber Sections and by Addition of Liquid Medium (영여자 절편체 배양 및 액체배지 첨가에 의한 둥근마의 기내 대량번식)

  • Kim, Young-Ho;Lim, Soon-Taek;Han, Bong-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.190-194
    • /
    • 2012
  • Shoot tips of chinese yam (Dioscorea opposita Thunb.) were cultured on MS medium containing 0.5 mg/L BA to produce micro-tubers in vitro. To stimulate the formation of shoots and micro-tubers, and produce large micro-tubers, the sections of micro-tubers were cultured on MS media with BA and IAA. The shoot multiplication, and the micro-tuber formation and growth were very effective on the media containing 2.0 mg/L BA and 0.5~1.0 mg/L IAA. Sucrose added to MS medium with 2.0 mg/L BA and 0.5 mg/L IAA to stimulate more micro-tuber growth. The medium added 50 g/L sucrose was very effective in the increase of plant fresh weight and micro-tuber growth. After 4 weeks' culture of micro-tuber sections on the medium with 2.0 mg/L BA, 0.5 mg/L IAA and 50 g/L sucrose, the liquid media were added into the same vessels. The micro-tuber growth was stimulated remarkably by the addition of liquid medium. The addition of 25 $m{\ell}$ liquid medium containing 10 g/L activated charcoal, 3x MS salts and 250 g/L sucrose was the most effective in micro-tuber growth.